Home
Class 9
MATHS
laws of Rational exponents are same as r...

laws of Rational exponents are same as real exponents. (i) `a^p xx a^q = a^(p+q)` (ii) `a^p/a^q = a^(p-q)` (iii) `(a^p)^q = a^(pq)` (iv) `a^(-q) = 1/a^q`

Promotional Banner

Similar Questions

Explore conceptually related problems

If p and q and q are two statements , prove that (i) ~( p vee q) -= (~p) ^^ ( q) " " (ii) ~( p ^^ q) = (~p) v(~q)

laws of rational exponent (v)(ab)^(p)=a^(p)b^(p)(vi)((a)/(b))^(p)=(a^(p))/(b^(p))(vii)a^((p)/(q))=(a^(p))^((1)/(q))=(a^(q))^((1)/(p))

Construst truth tables for the following statements : ~(p ^^-q) " "(ii) ~[(~p) vee(~q)] " "(iii) (p ^^q) ^^ (~p)

Construst truth tables for the following statements : ~(p ^^-q) " "(ii) ~[(~p) vee(~q)] " "(iii) (p ^^q) ^^ (~p)

(p + q) ( p^2 - pq + q^2 ) = ____

If p, q, r are any real numbers, then (A) max (p, q) lt max (p, q, r) (B) min(p,q) =1/2 (p+q-|p-q|) (C) max (p, q) < min(p, q, r) (D) None of these

If p, q, r are any real numbers, then (A) max (p, q) lt max (p, q, r) (B) min(p,q) =1/2 (p+q-|p-q|) (C) max (p, q) < min(p, q, r) (D) None of these

Find the value of (a^(p)/a^(q))^(p+q-r)xx(a^(r)/a^(p))^(r+p-q)xx(a^(q)/a^(r))^(q+r-p)

Simply (a^(p)/a^(q))^(p+q-r).(a^(q)/a^(r ))^(q+r-p).(a^(r )/a^(p))^(r+p-q)

Show that (i) ~(p wedge q) -= ~p vee ~q (ii) ~(p to q) -= p wedge~q .