Home
Class 12
MATHS
A periodic function with period 1 is int...

A periodic function with period 1 is integrable over any finite interval. Also, for two real numbers a,b and two unequal non-zero positive integers m and n `int_a^(a+n) f(x)dx=int_b^(b+m) f(x)` calculate the value of `int_m^n f(x) dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_m^n x dx

The value of int[f(x)]^(n)f'(x)dx=

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=

Prove that int_(a)^(b) f(x) dx= int_(a)^(b) f(a+b-x) dx

Suppose for every integer n, .int_(n)^(n+1) f(x)dx = n^(2) . The value of int_(-2)^(4) f(x)dx is :

If |int_(a)^(b)f(x)dx|=int_(a)^(b)|f(x)|dx,a

If | int_(a)^(b) f(x)dx|= int_(a)^(b)|f(x)|dx,a ltb,"then " f(x)=0 has

Evaluate the following integrals: int_(a)^(b)f(x)dx +int_(b)^(a)f(x)dx