Home
Class 12
MATHS
Find the critical points of the function...

Find the critical points of the function `f(x)=2/3sqrt(x^3)-x/2+int_1^x(1/2+1/2cos2t-t^(1/2))dt`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the critical points of the function f(x)=(2)/(3)sqrt(x^(3))-(x)/(2)+int_(1)^(x)((1)/(2)+(1)/(2)cos2t-t^((1)/(2)))dt

Number of critical points of the function. f(x)=(2)/(3)sqrt(x^(3))-(x)/(2)+int_(1)^(x)((1)/(2)+(1)/(2)cos2t-sqrt(t)) dt which lie in the interval [-2pi,2pi] is………. .

Number of critical points of the function. f(x)=(2)/(3)sqrt(x^(3))-(x)/(2)+int_(1)^(x)((1)/(2)+(1)/(2)cos2t-sqrt(t)) dt which lie in the interval [-2pi,2pi] is………. .

Number of critical points of the function. f(x)=(2)/(3)sqrt(x^(3))-(x)/(2)+int_(1)^(x)((1)/(2)+(1)/(2)cos2t-sqrt(t)) dt which lie in the interval [-2pi,2pi] is………. .

The number of critical points of the function f(x)=int_(0)^(x)e^(t)(t-1)(t-2)(t-3)dt

The set of critical points of the function f(x) given by f(x)= x - log _(e)x + int((1)/(t)-2-2cos 4t) dt is

Find the deriative of the function f (x) = int _(0) ^(x) sqrt (1+ t ^(2)) dt.

Find the range of the function,f(x)=int_(-1)^(1)(sin xdt)/(1-2cos x+t^(2))