Home
Class 12
MATHS
int(2-a)^(2+a)f(x)dx is equal to [where ...

`int_(2-a)^(2+a)f(x)dx` is equal to [where `f(2-alpha)=f(2+alpha) AAalpha in R]` (a) 2`int_2^(2+a)f(x)dx` (b) `2int_0^af(x)dx` (c) `2int_2^2f(x)dx` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(2-a)^(2+a)f(x)dx is equal to (where f(2-a)=f(2+a)AA a in R)

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(0)^(2a)f(x)dx-int_(0)^(a)f(x)dx=

int_(2)^(3)f(5-x)dx-int_(2)^(3)f(x)dx=

If int_(0)^(2a) f(x)dx=int_(0)^(2a) f(x)dx , then

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

Prove that int_-2^2 f(x^4)dx=2int_0^2 f(x^4)dx