Home
Class 12
MATHS
cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@...

`cos^(2)73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The values of cos^(2)73^(0)+cos^(2)47^(0)-sin^(2)43^(0)+sin^(2)107^(0) is equal to: ( b) (1)/(2)(c)(sqrt(3))/(2) (d) sin^(2)73^(@)+cos^(4)73^(@)

Exact value of cos73^(@)+cos^(2)47^(@)-sin^(2)43^(@)+sin^(2)107^(@) is equal to:

cos ^ (2) 73 + cos ^ (2) 47-sin ^ (2) 43 + sin ^ (2107)

(cos^(2)1^(0)-cos^(2)2^(0))/(2sin3^(0)*sin1^(0)) is equal to

sin^2 47^@+sin^2 43^@=

2(cos^(2) 73^(0) +cos^(2)47^(0)) - cos 154^(0) =

The values of cos^2 73^0+cos^2 47^0-sin^2 43^0+sin^2 107^0 is equal to: (b) 1/2 (c) (sqrt(3))/2 (d) sin^2 73^@+cos^4 73^@

The values of cos^2 73^0+cos^2 47^0-sin^2 43^0+sin^2 107^0 is equal to: (a) 1 (b) 1/2 (c) (sqrt(3))/2 (d) sin^2 73^@+cos^4 73^@

The value of cos^(2)17^(@)-sin^(2)73^(@) is:

Prove that sin^(2)47^(@)+sin^(2)43^(@)=1