Home
Class 12
MATHS
Suppose that F(x) is an anti-derivative...

Suppose that `F(x)` is an anti-derivative of `f(x)=(sinx)/x ,w h e r ex > 0.` Then `int_1^3(sin2x)/xdx` can be expressed as (a)`F(6)-F(2)` (b) `1/2(F(6)-f(2))` (c)`1/2(F(3)-f(1))` (d) `2(F(6))-F(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_1^x(3^t)/(1+t^2)dx ,w h e r e x > 0. Then (a)for 0

If f(6-x)=f(x), for all x, then 1/5 int_2^3 x[f(x)+f(x+1)]dx is equal to :

Let f(x) be a function defined on R satisfying f(x)=f(1x) for all x in R. Then int_(-(1)/(2))^((1)/(2))f(x+(1)/(2))sin xdx equals

If f(1) = 1, f'(1) = 3, then the derivative of f(f(x))) + (f(x))^(2) at x = 1 is

f(0)=1 , f(2)=e^2 , f'(x)=f'(2-x) , then find the value of int_0^(2)f(x)dx

Suppose f:R rarr R is a function f(1)=2,f(2)=6 and f(x+y)=f(x)+kxy-2y^(2) for all x,y in R then

Ifxf(x)=3f^(2)(x)+2, then int(2x^(2)-12xf(x)+f(x))/((6f(x)-x)(x^(2)-f(x))^(2))dx equal.(A) (1)/(x^(2)-f(x))+c(B)(1)/(x^(2)+f(x))+c(C)(1)/(x-f(x))+c(D)(1)/(x+f(x))+c

If f(1)-1,f'(1)=3, then the value of derivative of f(f(f(x))+(f(x))^(2) at x=1 is