Home
Class 12
MATHS
[" Prove that "|[x,x^(2)yz],[y,y^(2)(z)/...

[" Prove that "|[x,x^(2)yz],[y,y^(2)(z)/(zx)],[z,z^(2)xy]|=(x-y)(y-z)(xy+yz+zx)],[" by wing properties of teterminant."]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

Show that |(x,x^(2),yz),(y,y^(2),zx),(z,z^(2),xy)|=(x-y)(y-z)(z-x)(xy+yz+zx)

Prove that |[1,x,x^2-yz],[1,y,y^2-zx],[1,z,z^2-xy]|= 0

[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)

Prove that |(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)|= (x-y)(y-z)(z-x)(xy + yz + zx) .

Show that: |[x, y ,z],[x^2, y^2, z^2], [yz, zx, xy ]|=(x-y)(y-z)(z-x).(xy+yz+zx)

Prove the following : |(1,x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy)|=0 .

By using properties of determinants, prove that |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)