Home
Class 12
MATHS
The numbers of possible continuous f(x) ...

The numbers of possible continuous `f(x)` defined in `[0,1]` for which `I_1=int_0^1f(x)dx=1,I_2=int_0^1xf(x)dx-a ,I_3=int_0^1x^2f(x)dx=a^2i s//a r e` 1 (b) `oo` (c) 2 (d) 0

Promotional Banner

Similar Questions

Explore conceptually related problems

(i) int_0^3(x^2+1)dx

If int_(0)^(1)f(x)dx=1, int_(0)^(1)x f(x)dx=a and int_(0)^(1)x^(2)f(x)dx=a^(2) , then : int_(0)^(1)(a-x)^(2)f(x)dx=

(i) int_0^1 x sqrt(2-x) dx (ii) int_0^1 x^2(1-x)^n dx

I=int_(0)^(1)e^(x^(2)-x)dx then

I=int_(0)^(1)((1+x)/(2-x))dx

(i) int_0^4 (2x+3) dx (ii) int_0^4 (2x-1)dx

(i) int_1^4(x^2-x)dx (ii) int_0^2(x^2+1) dx

int_0^1f(x)dx=1,\ int_0^1xf(x)dx=a ,\ int_0^1x^2f(x)dx=a^2,\ t h e n\ int_0^1(a-x)^2f(x)dx equals a. 4a^2 b. 0 c. 2a^2 d. none of these

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(2))dx then