Home
Class 9
MATHS
If a+b+c=0 then (a^3+b^3+c^3) is...

If `a+b+c=0` then ` (a^3+b^3+c^3)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Assertion (A) : If alpha , beta, gamma are the roots of x^3 -x-1=0 then alpha^3 + beta^3 + gamma^3 =1 Reason (R ): If a +b+c=0 then a^3 + b^3 +c^3 = 3abc

Assertion (A) : If alpha , beta, gamma are the roots of x^3 -x-1=0 then alpha^3 + beta^3 + gamma^3 =1 Reason (R ): If a +b+c=0 then a^3 + b^3 +c^3 = 3abc

If a+b+c = 0,then (a^3+b^3+c^3)^2 = ?

If a+b+c=0 , then (a^(3) + b^(3) + c^(3) ) div (abc) is equal to

Condition identitiy : If a+b+c=0 then a^(3)+b^(3)+c^(3)=3abc

If (a+b+c)=0, then a^(3)+b^(3)+c^(3)=3abc Find the value of (x-y)^(3)+(y-z)^(3)+(z-x)^(3)

If a+b+c=0 , then prove a^3+b^3+c^3=3a(c+a)(b+a)=3b(b+c)(b+a)=3c(c+a)(c+b)

If a+b+c= 0 find a^(3) + b^(3) + c^(3) + 3abc

If a+b +c =0 then value of a^(3) +b^(3) +c^(3) is