Home
Class 12
MATHS
For a complex number z, if arg(z) in (-p...

For a complex number z, if `arg(z) in (-pi, pi], ` then `arg(1+cos.(6pi)/(5)+I sin.(6pi)/(5))` is (here `i^(2)-1`)

A

`(3pi)/(5)`

B

`(2pi)/(5)`

C

`-(2pi)/(5)`

D

`-(3pi)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the argument of the complex number \( z = 1 + \cos\left(\frac{6\pi}{5}\right) + i \sin\left(\frac{6\pi}{5}\right) \), we can follow these steps: ### Step 1: Simplify the Complex Number We start with the expression: \[ z = 1 + \cos\left(\frac{6\pi}{5}\right) + i \sin\left(\frac{6\pi}{5}\right) \] ### Step 2: Use Trigonometric Identities Using the cosine and sine values: - \(\cos\left(\frac{6\pi}{5}\right) = -\cos\left(\frac{\pi}{5}\right)\) - \(\sin\left(\frac{6\pi}{5}\right) = -\sin\left(\frac{\pi}{5}\right)\) Thus, we can rewrite \( z \): \[ z = 1 - \cos\left(\frac{\pi}{5}\right) - i \sin\left(\frac{\pi}{5}\right) \] ### Step 3: Combine Real and Imaginary Parts Now, we can express \( z \) as: \[ z = (1 - \cos\left(\frac{\pi}{5}\right)) - i \sin\left(\frac{\pi}{5}\right) \] ### Step 4: Identify Real and Imaginary Parts Let: - Real part \( a = 1 - \cos\left(\frac{\pi}{5}\right) \) - Imaginary part \( b = -\sin\left(\frac{\pi}{5}\right) \) ### Step 5: Calculate the Argument The argument of a complex number \( z = a + bi \) is given by: \[ \arg(z) = \tan^{-1}\left(\frac{b}{a}\right) \] In our case: \[ \arg(z) = \tan^{-1}\left(\frac{-\sin\left(\frac{\pi}{5}\right)}{1 - \cos\left(\frac{\pi}{5}\right)}\right) \] ### Step 6: Simplify the Argument Using the identity \( 1 - \cos\theta = 2\sin^2\left(\frac{\theta}{2}\right) \): \[ 1 - \cos\left(\frac{\pi}{5}\right) = 2\sin^2\left(\frac{\pi}{10}\right) \] Thus, we can rewrite: \[ \arg(z) = \tan^{-1}\left(\frac{-\sin\left(\frac{\pi}{5}\right)}{2\sin^2\left(\frac{\pi}{10}\right)}\right) \] ### Step 7: Determine the Quadrant Since \( a > 0 \) and \( b < 0 \), the complex number lies in the fourth quadrant. Therefore, the argument will be negative. ### Step 8: Final Argument Calculation To find the argument in the range \( (-\pi, \pi] \): \[ \arg(z) = -\frac{2\pi}{5} \] ### Conclusion Thus, the argument of the complex number \( z \) is: \[ \arg(z) = -\frac{2\pi}{5} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 102

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 104

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

For a complex number Z. If arg(Z) in (-pi, pi] , then arg{1+cos.(6pi)/(7)+isin.(6pi)/(7)} is (here i^(2)=-1 )

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)

If z ne 0 be a complex number and "arg"(z)=pi//4 , then

z = (1+cos6 pi)+i sin6 pi

Arg{sin8(pi)/(5)+i(1+cos8(pi)/(5))} is equal to:

For a complex number Z, if arg Z=(pi)/(4) and |Z+(1)/(Z)|=4 , then the value of ||Z|-(1)/(|Z|)| is equal to

If |z^(2)+1|=|z| where arg(z)>0&arg z in[k pi,m pi], then (1)/(k)+(2)/(m) is equal to

The complex number z satisfying the condition arg{(z-1)/(z+1)}=(pi)/(4) lies on

The principal value of arg(z), where z=1+cos((8 pi)/(5))+i sin((8 pi)/(5))( where i=sqrt(-1) ) is given by

NTA MOCK TESTS-NTA JEE MOCK TEST 103-MATHEMATICS
  1. The coefficient of x^(4) in the expansion (1-x)^(8)(1+x)^(12) is equal...

    Text Solution

    |

  2. For a complex number z, if arg(z) in (-pi, pi], then arg(1+cos.(6pi)/...

    Text Solution

    |

  3. Consider the system of equations x+2y+3z=6, 4x+5y+6z=lambda, 7x+8y...

    Text Solution

    |

  4. Tibu and Babu are playing a game in which both the players roll a pair...

    Text Solution

    |

  5. Let alpha, beta and gamma be the roots of equation x^(3)+x+1=0, then (...

    Text Solution

    |

  6. Let l, m and n are three distinct numbers in arithmetic progression. A...

    Text Solution

    |

  7. The equation of incircle of the triangle formed by common tangents to ...

    Text Solution

    |

  8. The tangent to the ellipse (x^(2))/(25)+(y^(2))/(16)=1 at point P lyin...

    Text Solution

    |

  9. Let the tangents to the parabola y^(2)=4ax drawn from point P have slo...

    Text Solution

    |

  10. In the triangle ABC, vertices A, B, C are (1, 2), (3, 1), (-1, 6) resp...

    Text Solution

    |

  11. The image of the line (x-2)/(2)=(y-3)/(-3)=(z-4)/(1) in the plane x+y+...

    Text Solution

    |

  12. Let veca=hati+hatj-hatk and vecb=2hati-hatj+hatk. If vecc is a non - z...

    Text Solution

    |

  13. Let f:R rarrR, f(x)=x^(4)-8x^(3)+22x^(2)-24x+c. If sum of all extrem...

    Text Solution

    |

  14. If f(x) is a continuous function such that its value AA x in R is a r...

    Text Solution

    |

  15. The domain of the function f(x)=sqrt((x^(2)-8x+12).ln^(2)(x-3)) is

    Text Solution

    |

  16. The area bounded by y=sqrt(1-x^(2)) and y=x^(3)-x is divided by y - ax...

    Text Solution

    |

  17. The straight line y=2x meets y=f(x) at P, where f(x) is a solution of ...

    Text Solution

    |

  18. If int(2x^(2)+5)/(x^(2)+a)dx=f(x), where f(x) is a polynomial or ratio...

    Text Solution

    |

  19. Negation of the statement, ''I will work hard and pary'' is

    Text Solution

    |

  20. The solution set of the inequality (tan^(-1)x)^(2) le (tan^(-1)x) +6 i...

    Text Solution

    |