Home
Class 12
MATHS
Suppose cos^(2)y.(dy)/(dx)=sin(x+y)+sin(...

Suppose `cos^(2)y.(dy)/(dx)=sin(x+y)+sin(x-y), |x| le (pi)/(2) and |y|le(pi)/(2).` If `y((pi)/(3))=-(pi)/(2),` then `y((pi)/(2))` is

A

0

B

`(pi)/(4)`

C

`-(pi)/(4)`

D

`(pi)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given differential equation and find \( y\left(\frac{\pi}{2}\right) \), we will follow these steps: ### Step 1: Rewrite the Differential Equation The given differential equation is: \[ \cos^2 y \frac{dy}{dx} = \sin(x+y) + \sin(x-y) \] Using the sine addition and subtraction formulas, we can rewrite the right-hand side: \[ \sin(x+y) + \sin(x-y) = 2 \sin x \cos y \] Thus, the equation becomes: \[ \cos^2 y \frac{dy}{dx} = 2 \sin x \cos y \] ### Step 2: Separate Variables We can separate the variables \( y \) and \( x \): \[ \frac{dy}{\cos y} = \frac{2 \sin x}{\cos^2 y} dx \] This simplifies to: \[ \frac{dy}{\cos y} = 2 \sin x \, dx \] ### Step 3: Integrate Both Sides Now we integrate both sides: \[ \int \frac{dy}{\cos y} = \int 2 \sin x \, dx \] The left side integrates to: \[ \ln |\sec y + \tan y| + C_1 \] The right side integrates to: \[ -2 \cos x + C_2 \] Thus, we have: \[ \ln |\sec y + \tan y| = -2 \cos x + C \] ### Step 4: Exponentiate Both Sides Exponentiating both sides gives: \[ |\sec y + \tan y| = e^{-2 \cos x + C} = Ae^{-2 \cos x} \] where \( A = e^C \). ### Step 5: Use Initial Condition We are given the initial condition \( y\left(\frac{\pi}{3}\right) = -\frac{\pi}{2} \). We can find \( A \) using this condition: \[ \sec\left(-\frac{\pi}{2}\right) + \tan\left(-\frac{\pi}{2}\right) \text{ is undefined.} \] However, we can evaluate the limit as \( y \) approaches \(-\frac{\pi}{2}\): \[ \sec y \to 0 \quad \text{and} \quad \tan y \to -\infty \] Thus, we can assume \( A \) is a constant that we will determine later. ### Step 6: Find \( y\left(\frac{\pi}{2}\right) \) Now we need to find \( y\left(\frac{\pi}{2}\right) \): Using the equation: \[ |\sec y + \tan y| = Ae^{-2\cos\left(\frac{\pi}{2}\right)} = A \] As \( \cos\left(\frac{\pi}{2}\right) = 0 \), we have: \[ |\sec y + \tan y| = A \] Since \( y \) approaches \( 0 \) as \( x \) approaches \( \frac{\pi}{2} \), we find: \[ \sec(0) + \tan(0) = 1 + 0 = 1 \] Thus, \( A = 1 \). ### Conclusion Therefore, we conclude: \[ y\left(\frac{\pi}{2}\right) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 104

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 107

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

y(dy)/(dx)sin x=cos x(sin x-(y^(2))/(2)); where at x=(pi)/(2)

if y=y(x) and (2+sin x)/(y+1)((dy)/(dx))=-cos x,y(0)=1, then y((pi)/(2))=

If cos x (dy)/(dx)-y sin x = 6x, (0 lt x lt (pi)/(2)) and y((pi)/(3))=0 , then y((pi)/(6)) is equal to :-

If y=y(x) is the solution of the equation e^(sin y) cos y""(dy)/(dx) +e^(sin y) cos x = cos x,y (0)=0, then 1+y ((pi)/(6)) +( sqrt(3))/(2) y((pi)/(3)) +(1)/( sqrt(2)) y((pi)/(4)) is equal to

If y=y(x) and (2+sin x)/(y+1)((dy)/(dx))=-cos x,y(0)=1, then y((pi)/(2)) equals

If y=sin^(-1)(sin x), then (dy)/(dx) at x=(pi)/(2) is

If y + sin y = cos x, then (dy)/(dx) at   ((pi)/(2), (pi)/(2)) is :

If x=sin((pi)/(3)+A)*cos((pi)/(3)+B) and y=cos((pi)/(3)+A)*sin ((pi)/(3)+B) then x-y=

Solve sin x*(dy)/(dx)=y*ln y if y=e, when x=(pi)/(2)

If y=sin^(-1)(sin x),-(pi)/(2)<=x<=(pi)/(2). Then, write the value of (dy)/(dx) for x in(-(pi)/(2),(pi)/(2))

NTA MOCK TESTS-NTA JEE MOCK TEST 106-MATHEMATICS
  1. If f(x)=x^(2)+(x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+…… upto, oo, t...

    Text Solution

    |

  2. The area (in square units) bounded byy=x^(2)+x+1 and x+y=2 is

    Text Solution

    |

  3. Suppose cos^(2)y.(dy)/(dx)=sin(x+y)+sin(x-y), |x| le (pi)/(2) and |y|l...

    Text Solution

    |

  4. If (1!)^(2) + (2!)^(2) + (3!)^(2) + "…….." + (99!)^(2) is divided by 1...

    Text Solution

    |

  5. If a number of ellipse whose major axis is x - axis and the minor axis...

    Text Solution

    |

  6. Find the set of all values of a for which the roots of the equation x^...

    Text Solution

    |

  7. Let F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(2k))(1+sin(2k+1)pi/(2k))(1+sin...

    Text Solution

    |

  8. Number of solutions of the equation sin^4x-cos^2xsinx+2sin^2x+sinx=0in...

    Text Solution

    |

  9. Let veca=(cos theta)hati-(sin theta)hatj, vecb=(sin theta)hati+(cos th...

    Text Solution

    |

  10. Two numbers are selected randomly from the set S={1,2,3,4,5,6} without...

    Text Solution

    |

  11. A line is drawn from the point P(1, 1, 1) and perpendicular to a line ...

    Text Solution

    |

  12. If alpha,beta,gamma are the roots of p x^2+q x^2+r=0, then the value o...

    Text Solution

    |

  13. If f(x)=sin^(-1)""(2*(3)^(x))/(1+9^(x)), then f'(-(1)/(2)) is equal to

    Text Solution

    |

  14. The line 2x-y+1=0 is tangent to the circle at the point (2, 5) and the...

    Text Solution

    |

  15. The number of ways in which four different letters can be put in their...

    Text Solution

    |

  16. The maximum number of points on the parabola y^(2)=16x which re equidi...

    Text Solution

    |

  17. The slope of the tangent to the curve y=x^(3)+x+54 which also passes t...

    Text Solution

    |

  18. In an arithmetic progression containing 99 terms, then sum of all the ...

    Text Solution

    |

  19. Consider the system of equations ax+y+bz=0, bx+y+az=0 and ax+by+abz=0 ...

    Text Solution

    |

  20. Let A(z(1)),B(z(2)) and C(z(3)) be complex numbers satisfying the equa...

    Text Solution

    |