Home
Class 12
MATHS
If f(x)=sin^(-1)""(2*(3)^(x))/(1+9^(x)),...

If `f(x)=sin^(-1)""(2*(3)^(x))/(1+9^(x))`, then `f'(-(1)/(2))` is equal to

A

`sqrt3log_(e)sqrt3`

B

`-sqrt3log_(e)sqrt3`

C

`-sqrt3log_(e)3`

D

`sqrt3log_(e)3`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(-\frac{1}{2}) \) for the function \( f(x) = \sin^{-1}\left(\frac{2 \cdot 3^x}{1 + 9^x}\right) \), we will follow these steps: ### Step 1: Rewrite the function We start with the function: \[ f(x) = \sin^{-1}\left(\frac{2 \cdot 3^x}{1 + 9^x}\right) \] Notice that \( 9^x = (3^2)^x = (3^x)^2 \). Thus, we can rewrite the denominator: \[ f(x) = \sin^{-1}\left(\frac{2 \cdot 3^x}{1 + (3^x)^2}\right) \] ### Step 2: Differentiate using the chain rule To differentiate \( f(x) \), we use the chain rule: \[ f'(x) = \frac{1}{\sqrt{1 - \left(\frac{2 \cdot 3^x}{1 + 9^x}\right)^2}} \cdot \frac{d}{dx}\left(\frac{2 \cdot 3^x}{1 + 9^x}\right) \] ### Step 3: Differentiate the inner function Let \( u = \frac{2 \cdot 3^x}{1 + 9^x} \). We need to find \( \frac{du}{dx} \): Using the quotient rule: \[ \frac{du}{dx} = \frac{(1 + 9^x)(2 \cdot 3^x \ln(3)) - 2 \cdot 3^x (9^x \ln(9))}{(1 + 9^x)^2} \] ### Step 4: Evaluate \( f'(-\frac{1}{2}) \) Now we substitute \( x = -\frac{1}{2} \): \[ 3^{-\frac{1}{2}} = \frac{1}{\sqrt{3}}, \quad 9^{-\frac{1}{2}} = \frac{1}{3} \] Thus: \[ u = \frac{2 \cdot \frac{1}{\sqrt{3}}}{1 + \frac{1}{3}} = \frac{2/\sqrt{3}}{4/3} = \frac{2 \cdot 3}{4 \sqrt{3}} = \frac{3}{2 \sqrt{3}} \] ### Step 5: Substitute back into the derivative Now we compute: \[ f'(-\frac{1}{2}) = \frac{1}{\sqrt{1 - \left(\frac{3}{2 \sqrt{3}}\right)^2}} \cdot \frac{du}{dx} \text{ at } x = -\frac{1}{2} \] ### Step 6: Simplify the expression Calculating \( \left(\frac{3}{2 \sqrt{3}}\right)^2 = \frac{9}{12} = \frac{3}{4} \): \[ 1 - \frac{3}{4} = \frac{1}{4} \Rightarrow \sqrt{1 - \left(\frac{3}{2 \sqrt{3}}\right)^2} = \frac{1}{2} \] ### Step 7: Final computation Thus: \[ f'(-\frac{1}{2}) = 2 \cdot \frac{du}{dx} \text{ at } x = -\frac{1}{2} \] After evaluating \( \frac{du}{dx} \) at \( x = -\frac{1}{2} \) and simplifying, we find: \[ f'(-\frac{1}{2}) = \frac{3}{2} \cdot \frac{1}{\sqrt{3}} \cdot \ln(3) = \frac{3 \ln(3)}{2 \sqrt{3}} \] ### Final Answer Thus, the final answer is: \[ f'(-\frac{1}{2}) = \sqrt{3} \ln(\sqrt{3}) \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 104

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 107

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)((2xx3^(x))/(1+9^(x))), then f'(-(1)/(2)) equals

f(x)=((1-cos x)/(1-sin x)), then f'((pi)/(2)) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=(1+x)(3+x^(2))^(1/2)(9+x^(3))^(1/3) then f'(-1) is equal to 0( b) 2sqrt(2)(c)4(d)6

If f(x+3)=x^(2)-1, then f(x) is equal to

Let f(x)=tan^(-1)((x^(3)-1)/(x^(2)+x)) , then the value of 17f'(2) is equal to

Let f(x)=1+2sin((e^(x))/(e^(x)+1))x>=0 then f^(-1)(x) is equal to (assuming fis bijectve)

If f(x)=cos^(-1)(sin sqrt((1+x)/(2)))+x^(x) ,then at x=1,f'(x) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 106-MATHEMATICS
  1. If f(x)=x^(2)+(x^(2))/(1+x^(2))+(x^(2))/((1+x^(2))^(2))+…… upto, oo, t...

    Text Solution

    |

  2. The area (in square units) bounded byy=x^(2)+x+1 and x+y=2 is

    Text Solution

    |

  3. Suppose cos^(2)y.(dy)/(dx)=sin(x+y)+sin(x-y), |x| le (pi)/(2) and |y|l...

    Text Solution

    |

  4. If (1!)^(2) + (2!)^(2) + (3!)^(2) + "…….." + (99!)^(2) is divided by 1...

    Text Solution

    |

  5. If a number of ellipse whose major axis is x - axis and the minor axis...

    Text Solution

    |

  6. Find the set of all values of a for which the roots of the equation x^...

    Text Solution

    |

  7. Let F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(2k))(1+sin(2k+1)pi/(2k))(1+sin...

    Text Solution

    |

  8. Number of solutions of the equation sin^4x-cos^2xsinx+2sin^2x+sinx=0in...

    Text Solution

    |

  9. Let veca=(cos theta)hati-(sin theta)hatj, vecb=(sin theta)hati+(cos th...

    Text Solution

    |

  10. Two numbers are selected randomly from the set S={1,2,3,4,5,6} without...

    Text Solution

    |

  11. A line is drawn from the point P(1, 1, 1) and perpendicular to a line ...

    Text Solution

    |

  12. If alpha,beta,gamma are the roots of p x^2+q x^2+r=0, then the value o...

    Text Solution

    |

  13. If f(x)=sin^(-1)""(2*(3)^(x))/(1+9^(x)), then f'(-(1)/(2)) is equal to

    Text Solution

    |

  14. The line 2x-y+1=0 is tangent to the circle at the point (2, 5) and the...

    Text Solution

    |

  15. The number of ways in which four different letters can be put in their...

    Text Solution

    |

  16. The maximum number of points on the parabola y^(2)=16x which re equidi...

    Text Solution

    |

  17. The slope of the tangent to the curve y=x^(3)+x+54 which also passes t...

    Text Solution

    |

  18. In an arithmetic progression containing 99 terms, then sum of all the ...

    Text Solution

    |

  19. Consider the system of equations ax+y+bz=0, bx+y+az=0 and ax+by+abz=0 ...

    Text Solution

    |

  20. Let A(z(1)),B(z(2)) and C(z(3)) be complex numbers satisfying the equa...

    Text Solution

    |