Home
Class 12
MATHS
Let f(n)=Sigma(r=1)^(10n)(6+rd) and g(n)...

Let `f(n)=Sigma_(r=1)^(10n)(6+rd) and g(n)=Sigma_(r=1)^(n)(6+rd)`, where `n in N, d ne 0.` If `(f(n))/(g(n))` is independent of n, then d is equal to

A

12

B

`-6`

C

6

D

`-12`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( d \) such that the ratio \( \frac{f(n)}{g(n)} \) is independent of \( n \). Let's break down the problem step by step. ### Step 1: Define \( f(n) \) and \( g(n) \) We have: \[ f(n) = \sum_{r=1}^{10n} (6 + rd) \] \[ g(n) = \sum_{r=1}^{n} (6 + rd) \] ### Step 2: Simplify \( f(n) \) To simplify \( f(n) \): \[ f(n) = \sum_{r=1}^{10n} 6 + \sum_{r=1}^{10n} rd \] The first term can be simplified as: \[ \sum_{r=1}^{10n} 6 = 6 \cdot 10n = 60n \] The second term can be simplified using the formula for the sum of the first \( m \) natural numbers: \[ \sum_{r=1}^{10n} r = \frac{10n(10n + 1)}{2} \] Thus, \[ \sum_{r=1}^{10n} rd = d \cdot \frac{10n(10n + 1)}{2} \] Combining these results, we have: \[ f(n) = 60n + d \cdot \frac{10n(10n + 1)}{2} \] ### Step 3: Simplify \( g(n) \) Now, simplify \( g(n) \): \[ g(n) = \sum_{r=1}^{n} 6 + \sum_{r=1}^{n} rd \] The first term simplifies to: \[ \sum_{r=1}^{n} 6 = 6n \] The second term simplifies as: \[ \sum_{r=1}^{n} r = \frac{n(n + 1)}{2} \] Thus, \[ \sum_{r=1}^{n} rd = d \cdot \frac{n(n + 1)}{2} \] Combining these results, we have: \[ g(n) = 6n + d \cdot \frac{n(n + 1)}{2} \] ### Step 4: Form the Ratio \( \frac{f(n)}{g(n)} \) Now, we can form the ratio: \[ \frac{f(n)}{g(n)} = \frac{60n + d \cdot \frac{10n(10n + 1)}{2}}{6n + d \cdot \frac{n(n + 1)}{2}} \] ### Step 5: Analyze Independence of \( n \) For \( \frac{f(n)}{g(n)} \) to be independent of \( n \), the degree of \( n \) in the numerator must equal the degree of \( n \) in the denominator. - The numerator simplifies to: \[ 60n + d \cdot 50n^2 + \frac{d \cdot 10n}{2} \] - The denominator simplifies to: \[ 6n + \frac{d}{2}n^2 + \frac{d}{2}n \] ### Step 6: Set the Coefficients To ensure independence from \( n \), we equate the coefficients of \( n^2 \) in both the numerator and denominator: \[ d \cdot 50 = \frac{d}{2} \] ### Step 7: Solve for \( d \) Solving the equation: \[ 50d = \frac{d}{2} \] Multiplying both sides by 2 gives: \[ 100d = d \] Rearranging gives: \[ 99d = 0 \] Since \( d \neq 0 \), we can conclude: \[ d = -12 \] ### Final Answer Thus, the value of \( d \) is: \[ \boxed{-12} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 108

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 19

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If Sigma_(r=1)^(n) cos^(-1)x_(r)=0, then Sigma_(r=1)^(n) x_(r) equals

Sigma_(r=0)^(n)(n-r)(.^(n)C_(r))^(2) is equal to

If f(n)=prod_(r=1)^(n)cos r,n in N , then

If Sigma_(r=1)^(n) T_r=n/8(n+1)(n+2)(n+3) then find Sigma_(r=1)^(n) 1/T_r

If Sigma_(r=1)^(2n) sin^(-1) x^(r )=n pi, then Sigma__(r=1)^(2n) x_(r ) is equal to

What is Sigma_(r=0)^(n) C(n,r) equal to ?

Sigma_(r=0)^(n)((r^(2))/(r+1)).^(n)C_(r) is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 109-MATHEMATICS
  1. The minimum value of p for which the lines 3x-4y=2, 3x-4y=12, 12x+5y=7...

    Text Solution

    |

  2. The coefficient of x^(6) in the expansion of (1-x)^(8)(1+x)^(12) is eq...

    Text Solution

    |

  3. For a complex number Z. If arg(Z) in (-pi, pi], then arg{1+cos.(6pi)/(...

    Text Solution

    |

  4. If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 i...

    Text Solution

    |

  5. The number of solutions of the equation tan x sin x-1=tanx-sinx, AA in...

    Text Solution

    |

  6. For f:R rarr R, f(x)=x^(4)-8x^(3)+22x^(2)-24x, the sum of all local ex...

    Text Solution

    |

  7. Let f(n)=Sigma(r=1)^(10n)(6+rd) and g(n)=Sigma(r=1)^(n)(6+rd), where n...

    Text Solution

    |

  8. The tangent to the parabola y=x^(2)-2x+8 at P(2, 8) touches the circle...

    Text Solution

    |

  9. The value of lim(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal ...

    Text Solution

    |

  10. The equation of an ex - circle of a triangle formed by the common tang...

    Text Solution

    |

  11. If the observation 1, 2, 3, ……….., n occur with frequency, n,(n-1), (n...

    Text Solution

    |

  12. The direction cosines of two lines satisfy 2l+2m-n=0 and lm+mn+nl=0. T...

    Text Solution

    |

  13. A statue of height 4 m stands on a tower of height 10 m. The angle sub...

    Text Solution

    |

  14. If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)], then the dete...

    Text Solution

    |

  15. The area bounded by the curve y=cosx and y=sin 2x, AA x in [(pi)/(6), ...

    Text Solution

    |

  16. The value of the integral int(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

    Text Solution

    |

  17. Let int(x^(3)+x^(2)+x)/(sqrt(12x^(3)+15x^(2)+20x))dx=f(x) where f(1)=(...

    Text Solution

    |

  18. Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4). If B=lambdaA, AA lambd...

    Text Solution

    |

  19. The number of permutations of alphabets of the word ''ENSHRINE'' in wh...

    Text Solution

    |

  20. For three vectors veca, vecb and vecc, If |veca|=2, |vecb|=1, vecaxxve...

    Text Solution

    |