Home
Class 12
MATHS
The value of the integral int(0)^(4)(x^(...

The value of the integral `int_(0)^(4)(x^(2))/(x^(2)-4x+8)dx` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{4} \frac{x^2}{x^2 - 4x + 8} \, dx \), we will follow these steps: ### Step 1: Simplify the Denominator First, we need to rewrite the denominator \( x^2 - 4x + 8 \) as a perfect square. We can do this by completing the square. \[ x^2 - 4x + 8 = (x^2 - 4x + 4) + 4 = (x - 2)^2 + 4 \] ### Step 2: Rewrite the Integral Now we can rewrite the integral using the new form of the denominator: \[ I = \int_{0}^{4} \frac{x^2}{(x - 2)^2 + 4} \, dx \] ### Step 3: Change of Variables Next, we will use the substitution \( t = x - 2 \). Thus, \( x = t + 2 \) and \( dx = dt \). We also need to change the limits of integration: - When \( x = 0 \), \( t = 0 - 2 = -2 \) - When \( x = 4 \), \( t = 4 - 2 = 2 \) Now the integral becomes: \[ I = \int_{-2}^{2} \frac{(t + 2)^2}{t^2 + 4} \, dt \] ### Step 4: Expand the Numerator Now we expand the numerator: \[ (t + 2)^2 = t^2 + 4t + 4 \] So we can rewrite the integral as: \[ I = \int_{-2}^{2} \frac{t^2 + 4t + 4}{t^2 + 4} \, dt \] ### Step 5: Split the Integral We can split the integral into three parts: \[ I = \int_{-2}^{2} \frac{t^2}{t^2 + 4} \, dt + \int_{-2}^{2} \frac{4t}{t^2 + 4} \, dt + \int_{-2}^{2} \frac{4}{t^2 + 4} \, dt \] ### Step 6: Evaluate Each Integral 1. **First Integral:** \[ \int_{-2}^{2} \frac{t^2}{t^2 + 4} \, dt \] This integral is even, so we can compute it from 0 to 2 and double the result. 2. **Second Integral:** \[ \int_{-2}^{2} \frac{4t}{t^2 + 4} \, dt = 0 \] This integral is odd, and thus evaluates to zero. 3. **Third Integral:** \[ \int_{-2}^{2} \frac{4}{t^2 + 4} \, dt = 4 \int_{-2}^{2} \frac{1}{t^2 + 4} \, dt \] This integral can be evaluated using the formula for the integral of \( \frac{1}{a^2 + x^2} \). ### Step 7: Final Calculation The integral \( \int \frac{1}{4 + t^2} \, dt \) can be computed as: \[ \int \frac{1}{4 + t^2} \, dt = \frac{1}{2} \tan^{-1} \left( \frac{t}{2} \right) \] Evaluating from -2 to 2 gives: \[ \left[ \frac{1}{2} \tan^{-1} \left( \frac{2}{2} \right) - \frac{1}{2} \tan^{-1} \left( \frac{-2}{2} \right) \right] = \frac{1}{2} \left( \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) \right) = \frac{1}{2} \cdot \frac{\pi}{2} = \frac{\pi}{4} \] Thus, the third integral contributes \( 4 \cdot \frac{\pi}{4} = \pi \). ### Conclusion Combining all parts, we find: \[ I = 2 \cdot \left( \frac{\pi}{4} \right) + 0 + \pi = \frac{\pi}{2} + \pi = \frac{3\pi}{2} \] Thus, the value of the integral is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 108

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 19

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(8)(x^(2))/(x^(2)+8x+32) dx is equal to

By Simpson rule taking n=4, the value of the integral int _(0)^(1)(1)/(1+x^(2))dx is equal to

The value of the integral int_(0)^(2)x[x]dx

The value of the integral int_(-4)^(4)(x^(3)-6x^(2)+12x-8)dx is

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(2)^(4) (sqrt(x^(2)-4))/(x^(4))dx is

The value of the integral int_(0)^(oo)(1)/(1+x^(4))dx is

The value of the integral int_(0)^(2)|x^(2)-1|dx is

int_(0)^( If )(f(t))dt=x+int_(x)^(1)(t^(2)*f(t))dt+(pi)/(4)-1 then the value of the integral int_(-1)^(1)(f(x))dx is equal to

The value of integral int_(2)^(4)(dx)/(x) is :-

NTA MOCK TESTS-NTA JEE MOCK TEST 109-MATHEMATICS
  1. The minimum value of p for which the lines 3x-4y=2, 3x-4y=12, 12x+5y=7...

    Text Solution

    |

  2. The coefficient of x^(6) in the expansion of (1-x)^(8)(1+x)^(12) is eq...

    Text Solution

    |

  3. For a complex number Z. If arg(Z) in (-pi, pi], then arg{1+cos.(6pi)/(...

    Text Solution

    |

  4. If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 i...

    Text Solution

    |

  5. The number of solutions of the equation tan x sin x-1=tanx-sinx, AA in...

    Text Solution

    |

  6. For f:R rarr R, f(x)=x^(4)-8x^(3)+22x^(2)-24x, the sum of all local ex...

    Text Solution

    |

  7. Let f(n)=Sigma(r=1)^(10n)(6+rd) and g(n)=Sigma(r=1)^(n)(6+rd), where n...

    Text Solution

    |

  8. The tangent to the parabola y=x^(2)-2x+8 at P(2, 8) touches the circle...

    Text Solution

    |

  9. The value of lim(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal ...

    Text Solution

    |

  10. The equation of an ex - circle of a triangle formed by the common tang...

    Text Solution

    |

  11. If the observation 1, 2, 3, ……….., n occur with frequency, n,(n-1), (n...

    Text Solution

    |

  12. The direction cosines of two lines satisfy 2l+2m-n=0 and lm+mn+nl=0. T...

    Text Solution

    |

  13. A statue of height 4 m stands on a tower of height 10 m. The angle sub...

    Text Solution

    |

  14. If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)], then the dete...

    Text Solution

    |

  15. The area bounded by the curve y=cosx and y=sin 2x, AA x in [(pi)/(6), ...

    Text Solution

    |

  16. The value of the integral int(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

    Text Solution

    |

  17. Let int(x^(3)+x^(2)+x)/(sqrt(12x^(3)+15x^(2)+20x))dx=f(x) where f(1)=(...

    Text Solution

    |

  18. Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4). If B=lambdaA, AA lambd...

    Text Solution

    |

  19. The number of permutations of alphabets of the word ''ENSHRINE'' in wh...

    Text Solution

    |

  20. For three vectors veca, vecb and vecc, If |veca|=2, |vecb|=1, vecaxxve...

    Text Solution

    |