Home
Class 12
MATHS
Let int(x^(3)+x^(2)+x)/(sqrt(12x^(3)+15x...

Let `int(x^(3)+x^(2)+x)/(sqrt(12x^(3)+15x^(2)+20x))dx=f(x)` where `f(1)=(sqrt(47))/(30).` If `(f(2))^(2)` is equal to `(p)/(255)`, then the value of p is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given and find the value of \( p \) such that \( (f(2))^2 = \frac{p}{255} \). ### Step-by-Step Solution: 1. **Rewrite the Integral**: \[ f(x) = \int \frac{x^3 + x^2 + x}{\sqrt{12x^3 + 15x^2 + 20x}} \, dx \] We can multiply the numerator and denominator by \( x \): \[ f(x) = \int \frac{x^4 + x^3 + x^2}{\sqrt{12x^5 + 15x^4 + 20x^2}} \, dx \] 2. **Substitution**: Let: \[ t = 12x^5 + 15x^4 + 20x^2 \] Then, differentiate \( t \): \[ dt = (60x^4 + 60x^3 + 40x) \, dx \] Rearranging gives: \[ dx = \frac{dt}{60(x^4 + x^3 + \frac{2}{3}x)} \] 3. **Substituting in the Integral**: Substitute \( t \) into the integral: \[ f(x) = \int \frac{(x^4 + x^3 + x^2)}{\sqrt{t}} \cdot \frac{dt}{60(x^4 + x^3 + \frac{2}{3}x)} \] Simplifying gives: \[ f(x) = \frac{1}{60} \int \frac{dt}{\sqrt{t}} \] 4. **Integrate**: The integral of \( \frac{1}{\sqrt{t}} \) is: \[ \int t^{-1/2} dt = 2\sqrt{t} + C \] Therefore: \[ f(x) = \frac{1}{60} \cdot 2\sqrt{t} + C = \frac{1}{30} \sqrt{12x^5 + 15x^4 + 20x^2} + C \] 5. **Finding the Constant \( C \)**: We know \( f(1) = \frac{\sqrt{47}}{30} \): \[ f(1) = \frac{1}{30} \sqrt{12(1)^5 + 15(1)^4 + 20(1)^2} + C \] Simplifying gives: \[ f(1) = \frac{1}{30} \sqrt{12 + 15 + 20} + C = \frac{1}{30} \sqrt{47} + C \] Setting this equal to \( \frac{\sqrt{47}}{30} \): \[ C = 0 \] Thus: \[ f(x) = \frac{1}{30} \sqrt{12x^5 + 15x^4 + 20x^2} \] 6. **Finding \( f(2) \)**: Now we compute \( f(2) \): \[ f(2) = \frac{1}{30} \sqrt{12(2^5) + 15(2^4) + 20(2^2)} \] Calculating inside the square root: \[ = \frac{1}{30} \sqrt{12 \cdot 32 + 15 \cdot 16 + 20 \cdot 4} = \frac{1}{30} \sqrt{384 + 240 + 80} = \frac{1}{30} \sqrt{704} \] 7. **Calculating \( (f(2))^2 \)**: \[ (f(2))^2 = \left(\frac{1}{30} \sqrt{704}\right)^2 = \frac{704}{900} \] 8. **Setting up the equation**: We know that: \[ (f(2))^2 = \frac{p}{255} \] Thus: \[ \frac{704}{900} = \frac{p}{255} \] 9. **Cross-multiplying**: \[ p = \frac{704 \cdot 255}{900} \] 10. **Calculating \( p \)**: Simplifying: \[ p = \frac{704 \cdot 255}{900} = \frac{704 \cdot 255}{900} = 196 \] ### Final Answer: The value of \( p \) is \( 196 \).
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 108

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 19

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Consider int(3x^(4)+2x^(2)+1)/(sqrt(x^(4)+x^(2)+1))dx=f(x) . If f(1)=sqrt3 , then (f(2))^(2) is equal to

Let int(x^((1)/(2)))/(sqrt(1-x^(3)))dx=(2)/(3)g(f(x))+c then

Let f(x),=int(x^(2))/((1+x^(2))(1+sqrt(1+x^(2))))dx and f(0),=0 then f(1) is

Let f(x)=tan^(-1)((x^(3)-1)/(x^(2)+x)) , then the value of 17f'(2) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log_(e)|(sqrt(f(x))-1)/(sqrt(f(x))+1)|-tan^(-1)sqrt(f(x))+C, then The value of f(1) is

Let f(x)=(x^(2)-x)/(x^(2)+2x) then d(f^(-1)x)/(dx) is equal to

The value if int(x^(2)-1)/((x^(2)+1)(sqrt(x^(4)+1)))dx equal to (1)/(sqrt(2))sec^(-1)(f(x))+c , then f(x) is

Let int(x^(2)-1)/(x^(3)sqrt(3x^(4)+2x^(2)-1))dx=f(x)+c where f(1)=-1 and c is the constant of integration.

NTA MOCK TESTS-NTA JEE MOCK TEST 109-MATHEMATICS
  1. The minimum value of p for which the lines 3x-4y=2, 3x-4y=12, 12x+5y=7...

    Text Solution

    |

  2. The coefficient of x^(6) in the expansion of (1-x)^(8)(1+x)^(12) is eq...

    Text Solution

    |

  3. For a complex number Z. If arg(Z) in (-pi, pi], then arg{1+cos.(6pi)/(...

    Text Solution

    |

  4. If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 i...

    Text Solution

    |

  5. The number of solutions of the equation tan x sin x-1=tanx-sinx, AA in...

    Text Solution

    |

  6. For f:R rarr R, f(x)=x^(4)-8x^(3)+22x^(2)-24x, the sum of all local ex...

    Text Solution

    |

  7. Let f(n)=Sigma(r=1)^(10n)(6+rd) and g(n)=Sigma(r=1)^(n)(6+rd), where n...

    Text Solution

    |

  8. The tangent to the parabola y=x^(2)-2x+8 at P(2, 8) touches the circle...

    Text Solution

    |

  9. The value of lim(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal ...

    Text Solution

    |

  10. The equation of an ex - circle of a triangle formed by the common tang...

    Text Solution

    |

  11. If the observation 1, 2, 3, ……….., n occur with frequency, n,(n-1), (n...

    Text Solution

    |

  12. The direction cosines of two lines satisfy 2l+2m-n=0 and lm+mn+nl=0. T...

    Text Solution

    |

  13. A statue of height 4 m stands on a tower of height 10 m. The angle sub...

    Text Solution

    |

  14. If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)], then the dete...

    Text Solution

    |

  15. The area bounded by the curve y=cosx and y=sin 2x, AA x in [(pi)/(6), ...

    Text Solution

    |

  16. The value of the integral int(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

    Text Solution

    |

  17. Let int(x^(3)+x^(2)+x)/(sqrt(12x^(3)+15x^(2)+20x))dx=f(x) where f(1)=(...

    Text Solution

    |

  18. Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4). If B=lambdaA, AA lambd...

    Text Solution

    |

  19. The number of permutations of alphabets of the word ''ENSHRINE'' in wh...

    Text Solution

    |

  20. For three vectors veca, vecb and vecc, If |veca|=2, |vecb|=1, vecaxxve...

    Text Solution

    |