Home
Class 12
MATHS
Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)...

Let `A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4)`. If `B=lambdaA, AA lambda in R`, then the value of `lambda` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\lambda\) such that \(B = \lambda A\), where \(B = A + A^2 + A^3 + A^4\) and \(A = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix}\). ### Step 1: Calculate \(A^2\) First, we calculate \(A^2\): \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \] Calculating the elements: - First row, first column: \(1 \cdot 1 + 1 \cdot 3 = 1 + 3 = 4\) - First row, second column: \(1 \cdot 1 + 1 \cdot 3 = 1 + 3 = 4\) - Second row, first column: \(3 \cdot 1 + 3 \cdot 3 = 3 + 9 = 12\) - Second row, second column: \(3 \cdot 1 + 3 \cdot 3 = 3 + 9 = 12\) Thus, \[ A^2 = \begin{pmatrix} 4 & 4 \\ 12 & 12 \end{pmatrix} \] ### Step 2: Express \(A^2\) in terms of \(A\) We can see that: \[ A^2 = 4A \] ### Step 3: Calculate \(A^3\) Next, we calculate \(A^3\): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 4 & 4 \\ 12 & 12 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \] Calculating the elements: - First row, first column: \(4 \cdot 1 + 4 \cdot 3 = 4 + 12 = 16\) - First row, second column: \(4 \cdot 1 + 4 \cdot 3 = 4 + 12 = 16\) - Second row, first column: \(12 \cdot 1 + 12 \cdot 3 = 12 + 36 = 48\) - Second row, second column: \(12 \cdot 1 + 12 \cdot 3 = 12 + 36 = 48\) Thus, \[ A^3 = \begin{pmatrix} 16 & 16 \\ 48 & 48 \end{pmatrix} \] ### Step 4: Express \(A^3\) in terms of \(A\) We can see that: \[ A^3 = 16A \] ### Step 5: Calculate \(A^4\) Now, we calculate \(A^4\): \[ A^4 = A^3 \cdot A = \begin{pmatrix} 16 & 16 \\ 48 & 48 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 3 & 3 \end{pmatrix} \] Calculating the elements: - First row, first column: \(16 \cdot 1 + 16 \cdot 3 = 16 + 48 = 64\) - First row, second column: \(16 \cdot 1 + 16 \cdot 3 = 16 + 48 = 64\) - Second row, first column: \(48 \cdot 1 + 48 \cdot 3 = 48 + 144 = 192\) - Second row, second column: \(48 \cdot 1 + 48 \cdot 3 = 48 + 144 = 192\) Thus, \[ A^4 = \begin{pmatrix} 64 & 64 \\ 192 & 192 \end{pmatrix} \] ### Step 6: Express \(A^4\) in terms of \(A\) We can see that: \[ A^4 = 64A \] ### Step 7: Calculate \(B\) Now we can calculate \(B\): \[ B = A + A^2 + A^3 + A^4 \] Substituting the values we found: \[ B = A + 4A + 16A + 64A = (1 + 4 + 16 + 64)A = 85A \] ### Step 8: Find \(\lambda\) Since \(B = \lambda A\), we have: \[ 85A = \lambda A \] Comparing both sides, we find: \[ \lambda = 85 \] ### Final Answer Thus, the value of \(\lambda\) is: \[ \boxed{85} \]
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 108

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 19

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

Let the matrix A=[(1,1),(2,2)] and B=A+A^(2)+A^(3)+A^(4) . If B=lambdaA, AA lambda in R , then the vlaue of lambda is equal to

The point (lambda+1,1),(2 lambda+1,3) and (2 lambda+2,2 lambda) are collinear,then the value of lambda can be

if A=[(1,2),(2,3)] and A^(2) -lambdaA-l_(2)=O, then lambda is equal to

Let A be a 3 xx 3 matrix such that adj A = [{:(,2,-1,1),(,-1,0,2),(,1,-2,-1):}] and B =adj (adj A) . If |A| = lambda and |(B^(-1))^T| = mu then the ordered pair (|lambda|, mu) is equal to

If the points A(2,3,-4), B(1,-2,3) and C (3,lambda,-1) are colliner, then value of lambda is

If A=[(1,-2,1),(2,lambda,-2),(1,3,-3)] be the adjoint matrix of matrix B such that |B|=9 , then the value of lambda is equal to

Let A=[[4, a ],[-1,b]] and B=[[1,-2],[1,4]] are two matrices satisfying the relation A^(3)+3A^(2)B+3AB^(2)+B^(3)=(A+B)^(3) .If (A+B)= lambda(A^(-1)+B^(-1)) ,then find the value of lambda

If the points A(-1, 3, lambda), B(-2, 0, 1) and C(-4, mu, -3) are collinear, then the values of lambda and mu are

If the lines (x-1)/(1)=(y-3)/(1)=(z-2)/(lambda) and (x-1)/(lambda)=(y-3)/(2)=(z-4)/(1) intersect at a point, then the value of lambda^(2)+4 is equal to

NTA MOCK TESTS-NTA JEE MOCK TEST 109-MATHEMATICS
  1. The minimum value of p for which the lines 3x-4y=2, 3x-4y=12, 12x+5y=7...

    Text Solution

    |

  2. The coefficient of x^(6) in the expansion of (1-x)^(8)(1+x)^(12) is eq...

    Text Solution

    |

  3. For a complex number Z. If arg(Z) in (-pi, pi], then arg{1+cos.(6pi)/(...

    Text Solution

    |

  4. If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 i...

    Text Solution

    |

  5. The number of solutions of the equation tan x sin x-1=tanx-sinx, AA in...

    Text Solution

    |

  6. For f:R rarr R, f(x)=x^(4)-8x^(3)+22x^(2)-24x, the sum of all local ex...

    Text Solution

    |

  7. Let f(n)=Sigma(r=1)^(10n)(6+rd) and g(n)=Sigma(r=1)^(n)(6+rd), where n...

    Text Solution

    |

  8. The tangent to the parabola y=x^(2)-2x+8 at P(2, 8) touches the circle...

    Text Solution

    |

  9. The value of lim(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal ...

    Text Solution

    |

  10. The equation of an ex - circle of a triangle formed by the common tang...

    Text Solution

    |

  11. If the observation 1, 2, 3, ……….., n occur with frequency, n,(n-1), (n...

    Text Solution

    |

  12. The direction cosines of two lines satisfy 2l+2m-n=0 and lm+mn+nl=0. T...

    Text Solution

    |

  13. A statue of height 4 m stands on a tower of height 10 m. The angle sub...

    Text Solution

    |

  14. If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)], then the dete...

    Text Solution

    |

  15. The area bounded by the curve y=cosx and y=sin 2x, AA x in [(pi)/(6), ...

    Text Solution

    |

  16. The value of the integral int(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

    Text Solution

    |

  17. Let int(x^(3)+x^(2)+x)/(sqrt(12x^(3)+15x^(2)+20x))dx=f(x) where f(1)=(...

    Text Solution

    |

  18. Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4). If B=lambdaA, AA lambd...

    Text Solution

    |

  19. The number of permutations of alphabets of the word ''ENSHRINE'' in wh...

    Text Solution

    |

  20. For three vectors veca, vecb and vecc, If |veca|=2, |vecb|=1, vecaxxve...

    Text Solution

    |