Home
Class 12
MATHS
For three vectors veca, vecb and vecc, I...

For three vectors `veca, vecb and vecc`, If `|veca|=2, |vecb|=1, vecaxxvecb=vecc` and `vecbxxvecc=veca`, then the value of `[(veca+vecb,vecb+vecc,vecc+veca)]` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the scalar triple product \([( \vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a} )]\). Given the conditions of the vectors, we can follow these steps: ### Step 1: Understand the given conditions We have: - \(|\vec{a}| = 2\) - \(|\vec{b}| = 1\) - \(\vec{a} \times \vec{b} = \vec{c}\) - \(\vec{b} \times \vec{c} = \vec{a}\) ### Step 2: Calculate the magnitude of \(\vec{c}\) Using the formula for the magnitude of the cross product: \[ |\vec{c}| = |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \] Since \(\vec{a}\) and \(\vec{b}\) are perpendicular (as implied by the cross product), \(\sin \theta = 1\). Thus: \[ |\vec{c}| = |\vec{a}| \cdot |\vec{b}| = 2 \cdot 1 = 2 \] ### Step 3: Confirm the orthogonality of the vectors From the relationships given: - \(\vec{c} = \vec{a} \times \vec{b}\) implies \(\vec{c}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\). - \(\vec{a} = \vec{b} \times \vec{c}\) implies \(\vec{a}\) is perpendicular to both \(\vec{b}\) and \(\vec{c}\). Thus, all three vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are mutually perpendicular. ### Step 4: Calculate the scalar triple product The scalar triple product can be expressed as: \[ [\vec{u}, \vec{v}, \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w}) \] For our case: \[ [\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] \] We can expand this using the distributive property of the dot and cross products. ### Step 5: Expand the expression Let: - \(\vec{u} = \vec{a} + \vec{b}\) - \(\vec{v} = \vec{b} + \vec{c}\) - \(\vec{w} = \vec{c} + \vec{a}\) We need to compute: \[ \vec{u} \cdot (\vec{v} \times \vec{w}) \] ### Step 6: Calculate \(\vec{v} \times \vec{w}\) Using the distributive property: \[ \vec{v} \times \vec{w} = (\vec{b} + \vec{c}) \times (\vec{c} + \vec{a}) = \vec{b} \times \vec{c} + \vec{b} \times \vec{a} + \vec{c} \times \vec{c} + \vec{c} \times \vec{a} \] Since \(\vec{c} \times \vec{c} = \vec{0}\), we have: \[ \vec{v} \times \vec{w} = \vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \] ### Step 7: Substitute back into the scalar triple product Now substituting this back into the scalar triple product: \[ [\vec{u}, \vec{v}, \vec{w}] = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}) \] ### Step 8: Evaluate the dot products Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are mutually perpendicular: - \(\vec{a} \cdot \vec{b} = 0\) - \(\vec{a} \cdot \vec{c} = 0\) - \(\vec{b} \cdot \vec{c} = 0\) Thus, we can simplify: \[ [\vec{u}, \vec{v}, \vec{w}] = |\vec{a}|^2 |\vec{b}| |\vec{c}| = 2^2 \cdot 1 \cdot 2 = 8 \] ### Final Answer The value of \([( \vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a} )]\) is equal to 8.
Promotional Banner

Topper's Solved these Questions

  • NTA JEE MOCK TEST 108

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos
  • NTA JEE MOCK TEST 19

    NTA MOCK TESTS|Exercise MATHEMATICS|25 Videos

Similar Questions

Explore conceptually related problems

If |veca|=3, |vecb|=1, |vecc|=4 and veca + vecb + vecc= vec0 , find the value of veca.vecb+ vecb+ vecc.vecc + vecc.veca .

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are three vectors such that veca+vecb+vecc=0and|veca|=2,|vecb|=3and|vecc|=5 , then the value of veca.vecb+vecb.vecc+vecc.veca is

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb , vecc)]=4 , then [(vecaxx(vecb+2vecc), vecbxx(vecc-3veca), vecc xx(3veca+vecb))] is equal to

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

veca,vecb,vecc are non zero vectors. If vecaxxvecb=vecaxxvecc and veca.vecb=veca.vecc then show that vecb=vecc .

NTA MOCK TESTS-NTA JEE MOCK TEST 109-MATHEMATICS
  1. The minimum value of p for which the lines 3x-4y=2, 3x-4y=12, 12x+5y=7...

    Text Solution

    |

  2. The coefficient of x^(6) in the expansion of (1-x)^(8)(1+x)^(12) is eq...

    Text Solution

    |

  3. For a complex number Z. If arg(Z) in (-pi, pi], then arg{1+cos.(6pi)/(...

    Text Solution

    |

  4. If the eccentricity of the hyperbola (x^(2))/(16)-(y^(2))/(b^(2))=-1 i...

    Text Solution

    |

  5. The number of solutions of the equation tan x sin x-1=tanx-sinx, AA in...

    Text Solution

    |

  6. For f:R rarr R, f(x)=x^(4)-8x^(3)+22x^(2)-24x, the sum of all local ex...

    Text Solution

    |

  7. Let f(n)=Sigma(r=1)^(10n)(6+rd) and g(n)=Sigma(r=1)^(n)(6+rd), where n...

    Text Solution

    |

  8. The tangent to the parabola y=x^(2)-2x+8 at P(2, 8) touches the circle...

    Text Solution

    |

  9. The value of lim(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal ...

    Text Solution

    |

  10. The equation of an ex - circle of a triangle formed by the common tang...

    Text Solution

    |

  11. If the observation 1, 2, 3, ……….., n occur with frequency, n,(n-1), (n...

    Text Solution

    |

  12. The direction cosines of two lines satisfy 2l+2m-n=0 and lm+mn+nl=0. T...

    Text Solution

    |

  13. A statue of height 4 m stands on a tower of height 10 m. The angle sub...

    Text Solution

    |

  14. If A=[(1, 2,3),(4, 5, 6)] and B=[(1, 4),(2, 5), (3, 6)], then the dete...

    Text Solution

    |

  15. The area bounded by the curve y=cosx and y=sin 2x, AA x in [(pi)/(6), ...

    Text Solution

    |

  16. The value of the integral int(0)^(4)(x^(2))/(x^(2)-4x+8)dx is equal to

    Text Solution

    |

  17. Let int(x^(3)+x^(2)+x)/(sqrt(12x^(3)+15x^(2)+20x))dx=f(x) where f(1)=(...

    Text Solution

    |

  18. Let A=[(1, 1),(3,3)] and B=A+A^(2)+A^(3)+A^(4). If B=lambdaA, AA lambd...

    Text Solution

    |

  19. The number of permutations of alphabets of the word ''ENSHRINE'' in wh...

    Text Solution

    |

  20. For three vectors veca, vecb and vecc, If |veca|=2, |vecb|=1, vecaxxve...

    Text Solution

    |