Home
Class 12
MATHS
The value of the definite integral in...

The value of the definite integral `int_0^(pi/2)sqrt(tanx)dx` is `sqrt(2)pi` (b) `pi/(sqrt(2))` `2sqrt(2)pi` (d) `pi/(2sqrt(2))`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the Definite Integrals : int_0^(pi/4) sqrt(1-sin2x) dx

int_0^(pi/2) sqrt(cosx)sinxdx

Find the value of the definite integral int_(0)^( pi)|sqrt(2)sin x+2cos x|dx

int_0^(pi/2) cosx/sqrt(1+sinx)dx

The value of the integral int_(-pi//2)^(pi//2) sqrt(cos -cos^(2)x)dx is

Evaluate int_0^(pi/2) sqrt(1+sinx) dx

int_(0)^(pi//2)(sqrt(tanx)+sqrt(cotx))\ dx

The value of the integral int_(0)^(pi//2)(sqrt(cotx))/(sqrt(cotx)+sqrt(tanx))dx is

int_(0)^(pi//2)sqrt(1+cos2x)dx=?

The value of the integral int_(-pi//2)^(pi//2) sqrt((1+cos^(2)x)/(2))dx is