Home
Class 12
MATHS
If f(x) =intx^(x^2) (t-1) dt,1 leq x le...

If `f(x) =int_x^(x^2) (t-1) dt,1 leq x leq 2` then global maximum value of `f(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = int_(x)^(x^(2)) (t-1)dt, 1 le x le 2 , find the greatest value of f(x).

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2t)dt,1lexle3 then the maximum value of f(x) is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

Let f(x) be a function defined by f(x)=int_(1)^(x)t(t^(2)-3t+2)dt,1ltxlt3 then the maximum value of f(x) is

Let f(x) be a function defined by f (x)=int_1^x x(x^2-3x+2)dx, 1 leq x leq 4 . Then, the range of f(x) is

If f(x)=int_(0)^(1)e^(|t-x|)dt where (0<=x<=1) then maximum value of f(x) is

If f(x) = int_1^x (1)/(2 + t^4) dt ,then

If F(x)= int_x^(x^2)e^(-t^4) dt then find F^1(x) .