Home
Class 12
MATHS
The function f(x)=sum(r=1)^5(x-r)^2 ...

The function `f(x)=sum_(r=1)^5(x-r)^2` assuming minimum value at `x=` (a)`5` (b) `5/2` (c)` 3` (d)` 2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sum_(k=1)^5 (x-K)^2 assumes then minimum value of x given by (a) 5 (b) 5/2 (c) 3 (d) 2

The function f(x)=sum_(k=1)^5 (x-K)^2 assumes then minimum value of x given by (a) 5 (b) 5/2 (c) 3 (d) 2

The function f(x)=sum_(k=1)^5 (x-K)^2 assumes then minimum value of x given by (a) 5 (b) 5/2 (c) 3 (d) 2

The function f(x)=sum_(k=1)^(5)(x-k)^(2) assumes minimum value for x given by:

The function f(x)=sum_(k=1)^(5)(x-K)^(2) assumes then minimum value of x given by (a) 5 (b) (5)/(2) (c) 3(d)2

Minimum value of f(x)=2x^(2)-4x+5 is 1 (b) -1(c)11 (d) 3

The function f(x)=2x^3-3x^2-12x+5 has a minimum at x=...a) -1 b) 2 c) -1/2 d) 3/2

The minimum value of |x-3|+|x-2|+|x-5| is (A) 3 (B) 7 (C) 5 (D) 9

The minimum value of |x-3|+|x-2|+|x-5| is (A) 3 (B) 7 (C) 5 (D) 9