Home
Class 12
MATHS
f(x) = 1 + [cosx]x in 0 leq x leq pi/2 ...

`f(x) = 1 + [cosx]x` in `0 leq x leq pi/2` (where [.] denotes greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

The number of integers in the range of function f(x)= [sinx] + [cosx] + [sinx + cosx] is (where [.] = denotes greatest integer function)

If f(x)=[2x], where [.] denotes the greatest integer function,then

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Let f(x)=[sinx + cosx], 0ltxlt2pi , (where [.] denotes the greatest integer function). Then the number of points of discontinuity of f(x) is :

If [2sinx]+[cosx]=-3 then the range of the function f(x)=sinx+sqrt3cosx in [0, 2pi] is, (where [.] denotes the greatest integer function)