Home
Class 12
MATHS
i^(2)+i^(3)+...+i^(4000)=...

i^(2)+i^(3)+...+i^(4000)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: i+ 2i^(2) + 3i^(3) + i^(4)

i+ i^(2) + i^(3) + i^(4) + …. + i^(100)

i+ 2i^(2) + 3i^(3) + 4i^(4) + …. + 100i^(100) =

i+i^(2)+i^(3)+i^(4)

i+i^(2)+i^(3)+"………"+i^(101)=

Simplify : (i+i^(2)+i^(3)+i^(4))/(1+i)

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

Evaluate 2i^(2)+ 6i^(3)+3i^(16) -6i^(19) + 4i^(25)

If a_(1),a_(2),a_(3),....,a_(4001) are terms of AP such that sum_(i=1)^(4000)(1)/(a_(i)a_(i+1))=108a_(2)+a_(4000)=50 then |a_(1)-a_(4000)|=

Write the following in the form x+iy: (i) (3+2i)(2-i) (ii) 2i^(2)+6i^(3)+3i^(16)-6i^(19)+4i^(25) . (iii) ((3-2i)(2+3i))/((1+2i)(2-i)) .