Home
Class 12
MATHS
(x+3)/((x-1)(x^(2)+1))...

(x+3)/((x-1)(x^(2)+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of integral values which can be taken by the expression, f (x) = (x ^(3)-1)/((x-1) (x ^(2) -x+1)) for x in R, is:

The number of integral values which can be taken by the expression, f (x) = (x ^(3)-1)/((x-1) (x ^(2) -x+1)) for x in R, is: 1 2 3 infinite

int(2x+3)/(x(x+1)(x^2+1)dx

The expression: (((x^(2)+3x+2)/(x+2))+3x-(x(x^(3)+1))/((x+1)(x^(2)+1))-log_(2)8)/((x-1)(log_(2)3)(log_(3)4)(log_(4)5)(log_(5)2)) reduces to

Simplify (x^(2)-1)/(x+1)-:(x^(3)-1)/(x^(2)+x+1)

Solve the equations : ((x+1)^(3)-(x-1)^(3))/((x+1)^(2)-(x-1)^(2))=2

(3x+1)/((x-2)(x+1))

If D(x)=det[[x-1,(x-1)^(2),x^(3)x-1,x^(2),(x+1)^(3)x,(x+1)^(2),(x+1)^(3)x,(x+1)^(2),(x+1)^(3)]] then

x^(3)+x^(2)-(1)/(x^(2))+(1)/(x^(3))=