Home
Class 12
MATHS
If A=[[-1, 1],[ 0,-2]] , then prove tha...

If `A=[[-1, 1],[ 0,-2]]` , then prove that `A^2+3A+2I=Odot` Hence, find `Ba n dC` matrices of order 2 with integer elements, if `A=B^3+C^3dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,-1,2],[3,0,-2],[1,0,3]] then prove that A*(adjA)=|A|I Also,find A^(-1)

If A=[[2,1],[3,7]] and B=[[-1,2],[3,5]] ,then prove that (AB)'=B'A'

If A=[0100], prove that (aI+bA)^(n)=a^(n)I+na^(n-1)bA where I is a unit matrix of order 2 and n is a positive integer.

If A=[[2,3] , [0,1]] and B=[[3,4] , [2,1]] then prove that (AB)'=B'A'

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

The number of 2xx2 idempotent matrices with integer entries are (A) 1 (B) 2 (C) 3 (D) oo

If A = [[1,-1,2],[3,0,-2],[1,0,3]] prove A.adjA=|A|I Also,find A^ (− 1)

No of symmetric matrices of order 3xx3 by using the elements of the set A={-3,-2,-1,0,1,2,3} is

If A=[[1,-2,3],[-4,2,5]] & B=[[1,3],[-1,0],[2,4]] then verify that (AB)'=B'A'