Home
Class 12
MATHS
Find the value of : int0^(10)e^(2x-[2x])...

Find the value of : `int_0^(10)e^(2x-[2x])d(x-[x])w h e r e[dot]` denotes the greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of int_(0)^(2)[x^(2)-x+1]dx (where,[*] denotes the greatest integer function) is equal to

int_(0)^(5)e^([x])dx is (where [.] denotes the greatest integer function)

The value of int_(0)^([x])(2^(x))/(2^([x]))dx is equal to (where,[.] denotes the greatest integer function)

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

The value of int_(-1)^(1)[|x|](1)/(1+e^(-(1)/(x)))dx where [.] denotes the greatest integer function is

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by: