Home
Class 12
MATHS
Let f(x) be defined as follows: f(x)=[((...

Let `f(x)` be defined as follows: `f(x)=[((cosx-sinx)^(cose cx),-pi/2ltxlt0),(a,x=0),(((e^(1/x)+e^(2/x)+e^(3/x))/(ae^(2x)+be^(3x)),0ltxltpi/2)]` if `f(x)` is continuous `x=0` , then (a)`a=1/e`(b)`a=e`(c) `b=1/e` (d)`b=e`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={((sinx+cosx)^(cosecx),-(pi)/2ltxlt0),(a,x=0),((e^(1/x)+e^(2/x)+e^(3/x))/(ae^(-2+1/x)+be(-1+3/x)), 0ltxlt(pi)/2):} is continuous at x=0 then

f(x)=(sin x+cos x)^(cosecx),-(pi)/(2)

If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =

If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =

Let f(x)=(e^(x)x cos x-x log_(e)(1+x)-x)/(x^(2)),x!=0 If f(x) is continuous at x=0, then f(0) is equal to

if f(x)=(e^(x^(2))-cosx)/(x^(2)) , for xne0 is continuous at x=0 , then value of f(0) is

Let f(x)={({1+|sinx|}^(a//|sinx|), -pi//6ltxlt0),(b, x=0),(e^(tan2x//tan3x), 0 Determine a and b such that f(x) is continuous at x=0

Let f(x) = (e^x x cosx-x log_e(1+x)-x)/x^2, x!=0. If f(x) is continuous at x = 0, then f(0) is equal to

Let f(x)=x^(2)(e^(1/x)e^(-1/x))/(e^(1/x)+e^(-1/x)),x!=0 and f(0)=1 then-