Home
Class 12
MATHS
f(x)=[2x]sin3pixa n df^(prime)(k^(prime)...

`f(x)=[2x]sin3pixa n df^(prime)(k^(prime))=lambdakpi(-1)^k` (where [.] denotes the greatest integer function and `k in N),` then find the value of `lambda` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

If f(x)=[2x]sin3pix then prove that f'(k^(+))=6kpi(-1)^(k) , (where [.] denotes the greatest integer function and k in N).

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If [.] denotes the greatest integer function then find the value of lim_(n rarr oo)([x]+[2x]+...+[nx])/(n^(2))

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then