Home
Class 12
MATHS
सिद्ध कीजिए (veca+vecb).((vecb+vec(C))xx...

सिद्ध कीजिए `(veca+vecb).((vecb+vec(C))xx(vec(c)+veca))=2[vecavecbvec(c)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that [(vec(a)xxvec(b))xx(vec(a)xxvec(c)))].vec(d)=(veca.vecd)[vecavecbvec(c)] .

Prove that : veca*(vecb+vec c)xx(veca+2vecb+3vec c)=[veca vecb vec c]

Prove that veca*(vecb+vec c)xx (veca+3vecb+2vec c)=-(veca vecb vecc )

If [veca+vecb, vecb+vec c, vec c+veca]=8 then [veca, vecb, vec c] is

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to

If [vec a vecb vec c] ne 0 and vecP=(vec b xx vec c)/([veca vecb vec c]), vecq=(vec c xx veca)/([veca vec b vec c]), vec r =(vec a xx vec b)/([veca vecb vec c ]) , then veca. vecp+ vecb. vecq+ vec c.vecr is equal to …………

It is given that : vec x = (vec b xx vec c)/([veca vec b vec c]) ; vecy=(vec c vec a)/([veca vecb vecc]) ; vecz=(veca xx vecb)/([veca vecb vecc]) where a, b, c are non-coplanar vectors; show that x, y, z also form a non-coplanar system. Find the value of vecx*(veca+vecb)+vecy*(vecb+vecc)+vecz(vecc+veca) .

For any three vectors veca,vecb,vec(c) prove that [vecbxxvec(c)" "vec(c)xxveca" "vecaxxvecb]=[vec(a)" "vecb" "vec(c)]^(2)