Home
Class 14
MATHS
The simplified value of (sec x+secy+tanx...

The simplified value of `(sec x+secy+tanx tany)^(2)-(sec x tany+tanyx secy)^(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The simplidied value of (sec x secy +tan x tany)^2-(sec x tan y + tan x secy)^2 is

(secx.secy + tanx.tany)^(2)-(secx.tany + tanx.secy)^(2) in its simplest form, is

(tanx)^(y)=(tany)^(x)

The solution of sec^(2)x tany dx+sec^(2)y tanx dy=0 is

Solve sec^(2)x tany dx+sec^(2)y tanx dy=0

Solve sec^(2)x tany dx+sec^(2)y tanx dy=0

Solve sec^(2)x tany dx+sec^(2)y tanx dy=0

(tanx)^(y)=(tany)^(x) find dy/dx

Prove that tan(x+y)=(tanx+tany)/(1-tanxtany)

Find dy/dx if tany=x^2