Home
Class 12
MATHS
Probability if n heads in 2n tosses of a...

Probability if `n` heads in `2n` tosses of a fair coin can be given by `prod_(r=1)^n((2r-1)/(2r))` b. `prod_(r=1)^n((n+r)/(2r))` c. `sum_(r=0)^n((^n C_r)/(2^n))` d. `(sumr=0n(^n C_r)^2)/(sumr=0 2n(^(2n)C_r)^)`

A

`underset(r = 1)overset(n)prod((2r-1)/(2r))`

B

`underset(r = 1)overset(n)prod((n+r)/(2r))`

C

`underset(r = 0)overset(n)Sigma((.^(n)C_(r))/(2^(n)))^(2)`

D

`(underset(r = 0)overset(n)Sigma(.^(n)C_(r))^(2))/((underset(r=0)overset(2n)Sigma.^(2n)C_(r)))`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

`P(E) = (.^(2n)C_(n))/(2^(2n)) = ((2n)!)/(n! n! 2^(n) 2^(n))`
`=(1xx2xx3xx...xx(2n))/(n!n!2^(n)2^(n))`
`=(1xx3xx5...xx(2n - 1))/(n! 2^(n))`
Now,
`underset(r = 1)overset(n) prod((2r-1)/(2r))=(1xx3xx5xx...xx(2n-1))/(2xx4xx6xx...xx(2n))`
`=(1xx3xx5xx...xx(2n-1))/((1xx2xx3xx...xxn)2^(n))`
`underset(r = 0)overset(n)sum((.^(n)C_(r))/(2^(n)))^(2) = (1)/(2^(n)2^(n)) underset(r = 0)overset(n)sum (.^(n)C_(r))^(2) = (1)/(2^(n)2^(n)) .^(2n)C_(n)`
Also, `(underset(r = 0)overset(n)sum(.^(n)C_(r))^(2))/((underset(r = 0)overset(2n)sum .^(2n)C_(r))) = (.^(2n)C_(n))/(2^(2n))`
Promotional Banner

Topper's Solved these Questions

  • PROBABILITY I

    CENGAGE|Exercise Exercise (Comprehension)|14 Videos
  • PROBABILITY I

    CENGAGE|Exercise Exercise (Matrix)|2 Videos
  • PROBABILITY I

    CENGAGE|Exercise Exercise (Single)|46 Videos
  • PROBABILITY AND STATISTICS

    CENGAGE|Exercise Question Bank|37 Videos
  • PROBABILITY II

    CENGAGE|Exercise NUMARICAL VALUE TYPE|2 Videos

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

sum_(r=1)^(n)(C(n,r))/(r+2) is equal to

If sum_(r=0)^(n)(2r)/(C(n,r))=sum_(r=0)^(n)(n^(3)-3n+3)/(C)(n,r)

If a_(n)=sum_(r=0)^(n)(1)/(*^(n)C_(r)), the value of sum_(r=0)^(n)(n-2r)/(n^(n)C_(r))

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))