Home
Class 12
MATHS
Show that ~(p harr q) -= ( p ^^ ~q) vv(~...

Show that `~(p harr q) -= ( p ^^ ~q) vv(~p ^^q)`.

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( \neg(p \leftrightarrow q) \equiv (p \land \neg q) \lor (\neg p \land q) \), we will use truth tables to verify the equivalence of the two expressions. ### Step 1: Define the Variables Let’s define the variables \( p \) and \( q \). Each variable can either be true (T) or false (F). We will consider all possible combinations of truth values for \( p \) and \( q \). ### Step 2: Create a Truth Table We will create a truth table that includes the columns for \( p \), \( q \), \( p \leftrightarrow q \), \( \neg(p \leftrightarrow q) \), \( \neg p \), \( \neg q \), \( p \land \neg q \), \( \neg p \land q \), and finally \( (p \land \neg q) \lor (\neg p \land q) \). | \( p \) | \( q \) | \( p \leftrightarrow q \) | \( \neg(p \leftrightarrow q) \) | \( \neg p \) | \( \neg q \) | \( p \land \neg q \) | \( \neg p \land q \) | \( (p \land \neg q) \lor (\neg p \land q) \) | |---------|---------|---------------------------|----------------------------------|--------------|--------------|----------------------|----------------------|----------------------------------------------| | T | T | T | F | F | F | F | F | F | | T | F | F | T | F | T | T | F | T | | F | T | F | T | T | F | F | T | T | | F | F | T | F | T | T | F | F | F | ### Step 3: Analyze the Truth Table Now, we will analyze the columns for \( \neg(p \leftrightarrow q) \) and \( (p \land \neg q) \lor (\neg p \land q) \). - The column for \( \neg(p \leftrightarrow q) \) has the values: F, T, T, F. - The column for \( (p \land \neg q) \lor (\neg p \land q) \) has the values: F, T, T, F. ### Step 4: Conclusion Since both columns match for all combinations of truth values, we conclude that: \[ \neg(p \leftrightarrow q) \equiv (p \land \neg q) \lor (\neg p \land q) \] This proves that the two expressions are logically equivalent.

To show that \( \neg(p \leftrightarrow q) \equiv (p \land \neg q) \lor (\neg p \land q) \), we will use truth tables to verify the equivalence of the two expressions. ### Step 1: Define the Variables Let’s define the variables \( p \) and \( q \). Each variable can either be true (T) or false (F). We will consider all possible combinations of truth values for \( p \) and \( q \). ### Step 2: Create a Truth Table We will create a truth table that includes the columns for \( p \), \( q \), \( p \leftrightarrow q \), \( \neg(p \leftrightarrow q) \), \( \neg p \), \( \neg q \), \( p \land \neg q \), \( \neg p \land q \), and finally \( (p \land \neg q) \lor (\neg p \land q) \). ...
Promotional Banner

Topper's Solved these Questions

  • MATHMETICAL REASONING

    CENGAGE|Exercise Exercise 10.2|5 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise Exercise (Single)|38 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE|Exercise JEE Previous Year|5 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos

Similar Questions

Explore conceptually related problems

(p ^^ q) vv (~q ^^ p) -=

Using the truth table, prove the following logical equivalence : p hArr q -= (p ^^ q) vv(~p ^^~q) .

(p ^^ ~q) ^^ (~p vv q) is

The Bolean Expression ( p ^^ ~ q) vv q vv ( ~ p ^^ q vv ( ~ p ^^ q) is equivalent to

Quivalent circuit for the logical expression (~p ^^ q) vv (~p ^^ ~q) vv (p ^^ ~q) is

p vv ~(p ^^ q) is a

If p is true and q is false then the truth values of (p harr q) harr (~q to ~p) and (~p vv q)^^(~q vv p) are respectively