Home
Class 12
MATHS
If a variable takes the discrete values ...

If a variable takes the discrete values `alpha-4`,
`alpha -(7)/(2), alpha-(5)/(2), alpha-2,alpha+(1)/(2), alpha-(1)/(2), alpha+5(alpha gt 0)`, then the median is

A

`alpha-(5)/(4)`

B

`alpha-(1)/(2)`

C

`alpha-2`

D

`alpha+(5)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the median of the given discrete values, we will follow these steps: ### Step 1: List the Values The variable takes the following discrete values: - \( \alpha - 4 \) - \( \alpha - \frac{7}{2} \) - \( \alpha - \frac{5}{2} \) - \( \alpha - 2 \) - \( \alpha + \frac{1}{2} \) - \( \alpha - \frac{1}{2} \) - \( \alpha + 5 \) ### Step 2: Arrange the Values in Ascending Order We need to arrange these values in ascending order. To do this, we can compare them based on the value of \( \alpha \). 1. \( \alpha - 4 \) 2. \( \alpha - \frac{7}{2} \) (which is \( \alpha - 3.5 \)) 3. \( \alpha - \frac{5}{2} \) (which is \( \alpha - 2.5 \)) 4. \( \alpha - 2 \) 5. \( \alpha - \frac{1}{2} \) (which is \( \alpha - 0.5 \)) 6. \( \alpha + \frac{1}{2} \) (which is \( \alpha + 0.5 \)) 7. \( \alpha + 5 \) Now, we can order them: - \( \alpha - 4 \) - \( \alpha - \frac{7}{2} \) - \( \alpha - \frac{5}{2} \) - \( \alpha - 2 \) - \( \alpha - \frac{1}{2} \) - \( \alpha + \frac{1}{2} \) - \( \alpha + 5 \) ### Step 3: Identify the Number of Values There are 7 values in total. ### Step 4: Find the Median Since there are 7 values (an odd number), the median is the middle value. The middle value can be found using the formula: \[ \text{Median} = \text{Value at position } \left(\frac{n + 1}{2}\right) \] where \( n \) is the number of values. Here, \( n = 7 \): \[ \text{Median} = \text{Value at position } \left(\frac{7 + 1}{2}\right) = \text{Value at position } 4 \] ### Step 5: Determine the 4th Value From our ordered list: 1. \( \alpha - 4 \) 2. \( \alpha - \frac{7}{2} \) 3. \( \alpha - \frac{5}{2} \) 4. \( \alpha - 2 \) (This is the 4th value) 5. \( \alpha - \frac{1}{2} \) 6. \( \alpha + \frac{1}{2} \) 7. \( \alpha + 5 \) ### Step 6: Conclusion Thus, the median of the given discrete values is: \[ \text{Median} = \alpha - 2 \]

To find the median of the given discrete values, we will follow these steps: ### Step 1: List the Values The variable takes the following discrete values: - \( \alpha - 4 \) - \( \alpha - \frac{7}{2} \) - \( \alpha - \frac{5}{2} \) - \( \alpha - 2 \) ...
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    CENGAGE|Exercise Exercise 11.1|5 Videos
  • STATISTICS

    CENGAGE|Exercise Exercise 11.2|6 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE|Exercise Comprehension Type|6 Videos
  • STRAIGHT LINE

    CENGAGE|Exercise Multiple Correct Answers Type|8 Videos

Similar Questions

Explore conceptually related problems

If a variable takes the discrete value alpha+4alpha-(7)/(2),alpha-(5)/(2),a-3,alpha-2,alpha+(1)/(2),alpha-(1)/(2)alpha+5(alpha>0), then the median of these values:

If alpha in Q_(4) and (sin alpha)/(2)+(cos alpha)/(2)=-(1)/(2) then sin2 alpha=

The value of (cot^(2)alpha)((sec alpha-1)/(1+sin alpha))+sec^(2)alpha((sin alpha-1)/(1+sec alpha)) is

If tan A=(alpha^(2)-alpha)/(alpha^(2)-alpha+1) and tan B=(1)/(2 alpha^(2)-2 alpha+1) then (A+B) equals to

If sin alpha-cos alpha=(1)/(5) then tan((alpha)/(2))=

The value of (sin5 alpha-sin3 alpha)/(cos5 alpha+2cos4 alpha+cos3 alpha) is

The value of (sin5 alpha-sin3 alpha)/(cos5 alpha+2cos4 alpha+cos3 alpha) is

sin alpha+sin2 alpha+sin4 alpha+sin5 alpha=4cos((alpha)/(2))cos(3(alpha)/(2))sin3 alpha