Home
Class 12
MATHS
Iff(y)=e^y ,g(y)>0,a n dF(t)=int0^t t...

`Iff(y)=e^y ,g(y)>0,a n dF(t)=int_0^t t(t-y)dt ,t h e n` `F(t)=e^t-(1+t)` `F(t)=t e^t` `F(t)=t e^(-1)` (d) `F(t)=1-e^t(1+t)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(y)=e^(y),g(y)=y,y>0, and F(t)=int_(0)^(t)f(t-y)g(y)dy ,then

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

int e^(t)(cost-sin t)dt

If k=int_(0)^(1) (e^(t))/(1+t)dt , then int_(0)^(1) e^(t)log_(e )(1+t)dt is equal to

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f(x)=int_(0)^(x)e^(-t)f(x-t)dt then the value of f(3) is

if int(e^(t)dt)/(1+t)=a then int e^(t)(dt)/((1+t)^(2))=