Home
Class 12
MATHS
If log(10) 2 = 0.3010 and log(10) 3 = 0...

If ` log_(10) 2 = 0.3010 and log_(10) 3 = 0.477`, then find the number of digits in the following numbers:
(a)` 3^(40)" "(b) 2^(32) xx 5^(25)" (c) 24^(24)`

Text Solution

Verified by Experts

The correct Answer is:
(a) 20 (b) 28 (c) 34

(a) ` N = 3^(40)`
`:. Log_(10)N = 40 log_(10) 3 = 40 xx 0.477 = 19.08`
So, number of digits in N is 20.
(b) `N= 2^(32) xx 5^(25) = 2^(7) (2 xx 5)^(25) = 2^(7) xx 10^(25)`
` :. Log_(10) N = 25 + 7 log_(10) 2`
` = 25 + 7 xx 0.3010`
` = 25+ 2.107`
` = 27.107`
So, number of digits in N is a 28.
(c) `log_(10)24^(24) = 24 (log_(10)(8xx3))`
` = 24 [3 log_(10)2+log_(10)3]`
` 24[3 xx 0.3010+ 0 .477]`
` = 24(1.38)`
` = 33.12`
So, number of digits in N is 34.
Promotional Banner

Similar Questions

Explore conceptually related problems

If log_(10) 2 = 0.3010 " and " log_(10) 3 = 0.4771 , then find the number of integers in 6^(15)

If log_(10)2 = 0.3010 and log_(10)3 = 0.4771 , then find the value log_(10) 135 .

If log_(10) 2=0.3010 then log_2 10=

If log_(10)2 = 0.3010 , then log_(10) 2000 =

If (log)_(10)2=0.30103,(log_(10)3=0.47712 then find the number of digits in 3^(12)*2^(8)

* if log_(10)3=0.4771 then the number of digits in 3^(40) is =

If log_(10)2 = 0.3010, then find the number of digits in (64)^(10) .