Home
Class 12
MATHS
Statement 1 :If the matrices, A ,B ,(A+B...

Statement 1 :If the matrices, `A ,B ,(A+B)` are non-singular, then `[A(A+B)^(-1)B]^(-1)=B^(-1)+A^(-1)dot` Statement 2: `[A(A+B)^(-1)B]^(-1)=[A(A^(-1)+B^(-1))B]^(-1)` `=[(I+^A B^(-1))B]^(-1)` `=[(B^+A B^(-1))B]^(-1)` `=[(B^+A I)]^(-1)` `=[(B^+A)]^(-1)` `=B^(-1)^+A^(-1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the matrices, A, B and (A+B) are non-singular, then prove that [A(A+B)^(-1) B]^(-1) =B^(-1)+A^(-1) .

If A and B are two non-singular matrices which commute, then (A(A+B)^(-1)B)^(-1)(AB)=

If A and B are two non-singular matrices which commute, then (A(A+B)^(-1)B)^(-1)(AB)=

If the two matrices A,B,(A+B) are non-singular (where A and B are of the same order),then (A(A+B)^(-1)B)^(-1) is equal to (A)A+B(B)A^(-1)+B^(-1)(C)(A+B)^(-1)(D)AB

For non-singular square matrix A ,\ B\ a n d\ C of the same order (A B^(-1)C)^(-1)= A^(-1)B C^(-1) (b) C^(-1)B^(-1)A^(-1) (c) C B A^(-1) (d) C^(-1)\ B\ A^(-1)

(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))

Prove that :(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))

(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))