Home
Class 12
MATHS
If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)...

If the lines `(x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2)a n d(x-1)/(3k)=(y-5)/1=(z-6)/(-5)` are at right angel, then find the value of `kdot`

Text Solution

Verified by Experts

The lines are perpendicular if `a_(1)a_(2)+b_(1)b_(2)+c_(1)c_(2)=0`.
Hence, `-3(3k)+2k(1)+2(-5)=0 or k=-(10)/(7)`.
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise 3.3|19 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise 3.4|5 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise 3.1|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos

Similar Questions

Explore conceptually related problems

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(-2) and (x-1)/(3k)=(y-5)/(1)=(z-6)/(-5) are at right angle,then find the value of k

The lines (x-2)/(1)=(y-3)/(2)=(z-4)/(3)and(x-1)/(-5)=(y-2)/(1)=(z-1)/(1) are

if the lines (x - 1)/(-3) = ( y - 2)/(2k) = ( z -3)/(2) and (x -1) /(3k) = ( y - 5)/(1) = (z - 6 ) /(-5) are at night angle , then find the value of k .

If the lines (x-1)/(-3)=(y-2)/(2k)=(z-3)/(2)(x-1)/(3k)=(y-1)/(1)=(z-6)/(-5) are perpendicular,find the value of k.

If the lines (x-1)/(-3)=(y-2)/(-2y)=(z-3)/(2) and (x-1)/(k)=(y-2)/(1)-(z-3)/(5) are perpendicular,find the value of k and hence find the equation of plane containing these lines.

The lines (x)/(1)=(y)/(2)=(z)/(3)and(x-1)/(-2)=(y-2)/(-4)=(z-3)/(-6) are

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(1)=(z-5)/(1) are coplanar if k=?

If the lines (x+1)/(-3)-(y+2)/(2k)-(z-3)/(2) and (x-1)/(3k)-(y+5)/(1)-(z+6)/(7) are perpendicular, then the value of k is