Home
Class 12
MATHS
Find the radius of the circular section ...

Find the radius of the circular section of the sphere `|vecr|=5` by the plane `vecr*(veci+vecj-veck)=4sqrt(3)`.

Text Solution

Verified by Experts

The radius of the sphere is 5
The given plane is `x+y-z= 4sqrt(3)`
The length of the perpendicular from the centre (0, 0, 0) of the sphere on the plane `= (4sqrt(3))/(sqrt(1+1+1))= 4`.
Hence, radius of the circular section is `sqrt(25-16) = sqrt9 = 3 `
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Subjective)|16 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Single)|86 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise 3.3|19 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos

Similar Questions

Explore conceptually related problems

Find the radius of the circular section of the sphere |vec r|=5 by the plane vec r*(hat i+2hat j-hat k)=4sqrt(3)

Find the radius of the circular section in which the sphere |vecr|=5 is cut by the plane vecr*(hati+hatj+hatk)=3sqrt(3)

Find the radius of the circular section in which the sphere |vec r|=5 is cut by the plane vec r*(hat i+hat j+hat k)=3sqrt(3)

Find the cosine of the angel between the planes vecr.(2veci-3vecj-6veck)=7 and vecr.(6veci+2vecj-9veck)=5

Find the direction cosines and unit vector along the vector vecr=2veci+vecj+3veck .

Find the equation of the plane through the 2veci+3vecj-veck and perpendicular to the vector 3veci+2vecj-2vecj . Determine the perpendicular distance of this plane from the origin.

A cricket match is organized between two Clubs A and B for which a team from each club is chosen. Remaining players of Club A and Club B are respectively sitting on the plane represented by the equation vecr.(2veci-vecj+veck)=3 and vecr.(veci+3vecj+2veck) =8 to cheer the team of their own clubs. Based on the above answer the following: The magnitude of the normal to the plane on which players of club B are seated, is

A cricket match is organized between two Clubs A and B for which a team from each club is chosen. Remaining players of Club A and Club B are respectively sitting on the plane represented by the equation vecr.(2veci-vecj+veck)=3 and vecr.(veci+3vecj+2veck) =8 to cheer the team of their own clubs. Based on the above answer the following: The Cartesian equation of the plane on which players of Club A are seated is

A cricket match is organized between two Clubs A and B for which a team from each club is chosen. Remaining players of Club A and Club B are respectively sitting on the plane represented by the equation vecr.(2veci-vecj+veck)=3 and vecr.(veci+3vecj+2veck) =8 to cheer the team of their own clubs. Based on the above answer the following: The distance of the plane, on which players of Club B are seated, from the origin is