Home
Class 12
MATHS
Statement 1 : Lines vecr= hati-hatj+ lam...

Statement 1 : Lines `vecr= hati-hatj+ lamda (hati+hatj-hatk) and vecr= 2hati-hatj+ mu (hati+hatj-hatk)` do not intersect.
Statement 2 : Skew lines never intersect.

A

Both the statements are true, and Statement 2 is the correct explanation for Statement 1.

B

Both the Statements are true, but Statement 2 is not the correct explanation for Statement 1.

C

Statement 1 is true and Statement 2 is false.

D

Statement 1 is false and Statement 2 is true.

Text Solution

Verified by Experts

The correct Answer is:
b

Given lines are parallel as both are directed along the same vector `(hati+hatj-hatk)` , so they do not intersect.
Also Statement 2 is correct by definitioin of skew lines, by skew lines are those which are neither parallel nor intersecting. Hence, both the statements are true, but Statement 2 is not the correct explanation for Statement 1.
Promotional Banner

Topper's Solved these Questions

  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Comprehension)|12 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • THREE-DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • THREE DIMENSIONAL GEOMETRY

    CENGAGE|Exercise Question Bank|20 Videos
  • TRIGNOMETRIC RATIOS IDENTITIES AND TRIGNOMETRIC EQUATIONS

    CENGAGE|Exercise Question Bank|34 Videos

Similar Questions

Explore conceptually related problems

The lines vecr=(hati+hatj)+lamda(hati+hatk)andvecr=(hati+hatj)+mu(-hati+hatj-hatk) are

Find the angle between the lines vecr = (hati+hatj)+lambda (hati+hatj+hatk)and vecr=(2hati-hatj)+t(2hati+3hatj+hatk)

Find the angle between the line: vecr=4hati-hatj+lamda(hati+2hatj-2hatk) and vevr=hati-hatj+2hatk-mu(2hati+4hatj-4hatk)

The shortest distance between the lines vecr = (-hati - hatj) + lambda(2hati - hatk) and vecr = (2hati - hatj) + mu(hati + hatj -hatk) is

Find the shortest distance between the lines vecr = 3 hati + 2hatj - 4 hatk + lamda ( hati +2 hatj +2 hatk ) and vecr = 5 hati - 2hatj + mu ( 3hati + 2hatj + 6 hatk) If the lines intersect find their point of intersection

The angle between the lines vecr=(2hati-5hatj+hatk)+lamda(3hati+2hatj+6hatk)andvecr=(7hati-6hatk)+mu(hati+2hatj+2hatk) is