Home
Class 12
MATHS
G i v e nint0^(pi/2)(dx)/(1+sinx+cosx)=l...

`G i v e nint_0^(pi/2)(dx)/(1+sinx+cosx)=log2.` Then the value of integral `int_0^(pi/2)(sinx)/(1+sinx+cosx)dx` is equal to `1/2log2` (b) `i spi/2-log2` `pi/4-1/2log2` (d) `pi/2+log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

int_(0)^( pi/2)(cosx)/(1+sinx)dx

int_(0)^(pi//2)(sinx)/(sqrt(1+cosx))dx

Evaluate int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

int _(0)^(pi//2) (cosx)/(1+sinx)dx is equal to

int_(0)^(pi//2)(cosx)/((1+sinx)(2+sinx))dx is equal to

int_0^(pi/2) cosx/(1+sinx)dx

Evaluate: int_0^(pi/2) ((x-pi/4)^2 sinx)/(sinx+cosx)dx

The value of int_(0)^(pi//2) log (sinx) dx is

int_0^(pi/2) cosx/sqrt(1+sinx)dx