Home
Class 12
MATHS
Let alpha and beta be the roots ...

Let ` alpha` and ` beta` be the roots of the equation ` 5x^2 + 6x-2 =0`. if ` S_(n ) = alpha ^(n) + beta^(n)`, `n= 1,2,3 ...` then :

A

`5 S _(6) - 6 S_(5)= 2S_(4)`

B

`6S_(6) + 5S_(5) = 2S_(4)`

C

`5S_(6) + 6S_(5) = 2S_(4) `

D

`6S_6 + 5S_5 + 2S_4 =0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( S_n = \alpha^n + \beta^n \) where \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( 5x^2 + 6x - 2 = 0 \). ### Step 1: Find the roots \( \alpha \) and \( \beta \) Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 5 \), \( b = 6 \), and \( c = -2 \). Calculating the discriminant: \[ D = b^2 - 4ac = 6^2 - 4 \cdot 5 \cdot (-2) = 36 + 40 = 76 \] Now substituting into the quadratic formula: \[ \alpha, \beta = \frac{-6 \pm \sqrt{76}}{2 \cdot 5} = \frac{-6 \pm 2\sqrt{19}}{10} = \frac{-3 \pm \sqrt{19}}{5} \] Thus, the roots are: \[ \alpha = \frac{-3 + \sqrt{19}}{5}, \quad \beta = \frac{-3 - \sqrt{19}}{5} \] ### Step 2: Use Vieta's Formulas From Vieta's formulas: - \( \alpha + \beta = -\frac{b}{a} = -\frac{6}{5} \) - \( \alpha \beta = \frac{c}{a} = -\frac{2}{5} \) ### Step 3: Establish a recurrence relation for \( S_n \) Using the recurrence relation: \[ S_n = \alpha^n + \beta^n \] We can derive: \[ S_{n+1} = (\alpha + \beta) S_n - \alpha \beta S_{n-1} \] Substituting the values from Vieta's: \[ S_{n+1} = -\frac{6}{5} S_n + \left(-\frac{2}{5}\right) S_{n-1} \] Multiplying through by 5 to eliminate the fractions: \[ 5 S_{n+1} = -6 S_n - 2 S_{n-1} \] Rearranging gives: \[ 5 S_{n+1} + 6 S_n + 2 S_{n-1} = 0 \] ### Step 4: Find initial conditions To solve the recurrence, we need initial conditions \( S_0 \) and \( S_1 \): - \( S_0 = \alpha^0 + \beta^0 = 1 + 1 = 2 \) - \( S_1 = \alpha + \beta = -\frac{6}{5} \) ### Step 5: Calculate \( S_n \) for \( n = 2, 3, 4, 5, 6 \) Using the recurrence relation: 1. For \( n = 2 \): \[ 5 S_2 + 6 S_1 + 2 S_0 = 0 \implies 5 S_2 + 6(-\frac{6}{5}) + 2(2) = 0 \] \[ 5 S_2 - \frac{36}{5} + 4 = 0 \implies 5 S_2 = \frac{36}{5} - 4 = \frac{36}{5} - \frac{20}{5} = \frac{16}{5} \] \[ S_2 = \frac{16}{25} \] 2. For \( n = 3 \): \[ 5 S_3 + 6 S_2 + 2 S_1 = 0 \implies 5 S_3 + 6(\frac{16}{25}) + 2(-\frac{6}{5}) = 0 \] \[ 5 S_3 + \frac{96}{25} - \frac{12}{5} = 0 \implies 5 S_3 + \frac{96}{25} - \frac{60}{25} = 0 \] \[ 5 S_3 + \frac{36}{25} = 0 \implies S_3 = -\frac{36}{125} \] 3. For \( n = 4 \): \[ 5 S_4 + 6 S_3 + 2 S_2 = 0 \implies 5 S_4 + 6(-\frac{36}{125}) + 2(\frac{16}{25}) = 0 \] \[ 5 S_4 - \frac{216}{125} + \frac{32}{25} = 0 \implies 5 S_4 - \frac{216}{125} + \frac{160}{125} = 0 \] \[ 5 S_4 - \frac{56}{125} = 0 \implies S_4 = \frac{56}{625} \] 4. For \( n = 5 \): \[ 5 S_5 + 6 S_4 + 2 S_3 = 0 \implies 5 S_5 + 6(\frac{56}{625}) + 2(-\frac{36}{125}) = 0 \] \[ 5 S_5 + \frac{336}{625} - \frac{72}{125} = 0 \implies 5 S_5 + \frac{336}{625} - \frac{360}{625} = 0 \] \[ 5 S_5 - \frac{24}{625} = 0 \implies S_5 = \frac{24}{3125} \] 5. For \( n = 6 \): \[ 5 S_6 + 6 S_5 + 2 S_4 = 0 \implies 5 S_6 + 6(\frac{24}{3125}) + 2(\frac{56}{625}) = 0 \] \[ 5 S_6 + \frac{144}{3125} + \frac{112}{625} = 0 \implies 5 S_6 + \frac{144}{3125} + \frac{224}{3125} = 0 \] \[ 5 S_6 + \frac{368}{3125} = 0 \implies S_6 = -\frac{368}{15625} \] ### Conclusion The values of \( S_n \) for \( n = 1, 2, 3, 4, 5, 6 \) are: - \( S_1 = -\frac{6}{5} \) - \( S_2 = \frac{16}{25} \) - \( S_3 = -\frac{36}{125} \) - \( S_4 = \frac{56}{625} \) - \( S_5 = \frac{24}{3125} \) - \( S_6 = -\frac{368}{15625} \)
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation ax^(2)+bx+b=0 and S_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=

Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n) , Show that V_(n+1) = pV_(n) -qV_(n-1) find V_(5)

If alpha,beta are the roots of the equation, x^(2)-x-1=0 and S_(n)=2023 alpha^(n)+2024 beta^(n) ,then 2S_(12)=S_(11)+S_(10)

If alpha " and " beta are the roots of the quadratic equation x^2 -5x +6 =0 then find alpha/beta + beta/alpha

Let alpha and beta be the roots of the equation x^(2)-6x-2=0 If a_(n)=alpha^(n)-beta^(n) for n>=0 then find the value of (a_(10)-2a_(8))/(2a_(9))

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. Box I contains 30 cards numbered 1 to 30 and box II contains ...

    Text Solution

    |

  2. Let X = {x in N : 1 le x le 17 } and Y ={ax + b : x in X...

    Text Solution

    |

  3. Let alpha and beta be the roots of the equation 5x^2 + 6x-...

    Text Solution

    |

  4. The sum of the first three terms of a G.P is S and their pr...

    Text Solution

    |

  5. If |x|<1a n d|y|<1, find the sum of infinity of the following series: ...

    Text Solution

    |

  6. Area ( in , sq units ) of the region outside (|x|)/(2) +(|y|)/...

    Text Solution

    |

  7. Let alpha gt beta gt 0 be such that alpha^3 + beta ^2 = 4. ...

    Text Solution

    |

  8. A line parallel to the straight line 2x-y=0 is tangent to the hypernol...

    Text Solution

    |

  9. If a function f(x) defined by f(x) ={{:(ae^(X) + be ^(-x ) , -1le...

    Text Solution

    |

  10. If the letters of the word 'MOTHER' be permuted and all the words so f...

    Text Solution

    |

  11. The integral int(0)^2 ||x-1|-x| dx is equal to

    Text Solution

    |

  12. The number of intergral values of k for which the line, 3x+4y=k inters...

    Text Solution

    |

  13. Let veca , vecb and vecc be three unit vectors such that |veca - vecb|...

    Text Solution

    |

  14. If lim (xto1)(x^(1)+x^(2)+x^(3)+"..."+x^(n)-n)/(x-1)=820,(nin N) the...

    Text Solution

    |

  15. Let R(1) and R(2) be two relation defined as follows : R(1) = ...

    Text Solution

    |

  16. Suppose f(x) is a polynomial of degree four , having critical poin...

    Text Solution

    |

  17. Let the latus ractum of the parabola y^(2) = 4x be the comon cho...

    Text Solution

    |

  18. underset(x to a)(Lim) ((a+2x)^((1)/(3)) - (3x)^((1)/(3)))/((3a+x)^((1)...

    Text Solution

    |

  19. If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1, t...

    Text Solution

    |

  20. The probabilty that a randomly chosen 5 - digit number is made fo...

    Text Solution

    |