Home
Class 12
MATHS
underset(x to a)(Lim) ((a+2x)^((1)/(3)) ...

`underset(x to a)(Lim) ((a+2x)^((1)/(3)) - (3x)^((1)/(3)))/((3a+x)^((1)/(3)) - (4x)^((1)/(3))) (a ne 0)` is equal to :

A

`((2)/(9))^(1/3)`

B

`((2)/(9))((2)/(3))^((1)/(3))`

C

`((2)/(3))^((4)/(3))`

D

`((2)/(3))((2)/(9))^((1)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to a} \frac{(a + 2x)^{\frac{1}{3}} - (3x)^{\frac{1}{3}}}{(3a + x)^{\frac{1}{3}} - (4x)^{\frac{1}{3}}} \] we will follow these steps: ### Step 1: Substitute \(x = a\) First, we substitute \(x = a\) into the limit expression to check if it results in an indeterminate form. \[ = \frac{(a + 2a)^{\frac{1}{3}} - (3a)^{\frac{1}{3}}}{(3a + a)^{\frac{1}{3}} - (4a)^{\frac{1}{3}}} \] This simplifies to: \[ = \frac{(3a)^{\frac{1}{3}} - (3a)^{\frac{1}{3}}}{(4a)^{\frac{1}{3}} - (4a)^{\frac{1}{3}}} = \frac{0}{0} \] Since we have a \(0/0\) form, we can apply L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately. **Numerator:** Let \(f(x) = (a + 2x)^{\frac{1}{3}} - (3x)^{\frac{1}{3}}\) Differentiating \(f(x)\): \[ f'(x) = \frac{2}{3}(a + 2x)^{-\frac{2}{3}} \cdot 2 - \frac{1}{3}(3x)^{-\frac{2}{3}} \cdot 3 \] This simplifies to: \[ = \frac{4}{3}(a + 2x)^{-\frac{2}{3}} - (x)^{-\frac{2}{3}} \] **Denominator:** Let \(g(x) = (3a + x)^{\frac{1}{3}} - (4x)^{\frac{1}{3}}\) Differentiating \(g(x)\): \[ g'(x) = \frac{1}{3}(3a + x)^{-\frac{2}{3}} - \frac{4}{3}(4x)^{-\frac{2}{3}} \] ### Step 3: Rewrite the limit using derivatives Now we can rewrite the limit as: \[ \lim_{x \to a} \frac{f'(x)}{g'(x)} \] ### Step 4: Substitute \(x = a\) again Substituting \(x = a\) into the derivatives: For the numerator: \[ f'(a) = \frac{4}{3}(a + 2a)^{-\frac{2}{3}} - (a)^{-\frac{2}{3}} = \frac{4}{3}(3a)^{-\frac{2}{3}} - (a)^{-\frac{2}{3}} \] For the denominator: \[ g'(a) = \frac{1}{3}(3a + a)^{-\frac{2}{3}} - \frac{4}{3}(4a)^{-\frac{2}{3}} = \frac{1}{3}(4a)^{-\frac{2}{3}} - \frac{4}{3}(4a)^{-\frac{2}{3}} = -\frac{3}{3}(4a)^{-\frac{2}{3}} = -\frac{1}{(4a)^{\frac{2}{3}}} \] ### Step 5: Evaluate the limit Now we have: \[ \lim_{x \to a} \frac{\frac{4}{3}(3a)^{-\frac{2}{3}} - (a)^{-\frac{2}{3}}}{-\frac{1}{(4a)^{\frac{2}{3}}}} \] This simplifies to: \[ = \frac{4(3a)^{-\frac{2}{3}} - 3(a)^{-\frac{2}{3}}}{-3(4a)^{-\frac{2}{3}}} \] ### Final Answer After simplifying, we find the limit evaluates to: \[ \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((1+x)^((1)/(3))-(1-x)^((1)/(3)))/(x)=(2)/(3)

lim_(x rarr0)((1+x)^((1)/(3))-(1-x)^((1)/(3)))/(x)=(2)/(3)

lim_(x rarr0)((1+x)^((1)/(3))-(1-x)^((1)/(3)))/(x)=(2)/(3)

lim_(x rarr a) (((a^2+2x^2)^(1/3) - (3x^2)^(1/3))/((3a^2+x^2)^(1/3)-(4x^2)^(1/3)))

lim_(x rarr0)((1+sin x)^((1)/(3))-(1-sin x)^((1)/(3)))/(x)

lim_(x rarr0)((1+sin x)^((1)/(3))-(1-sin x)^((1)/(3)))/(x)=

lim_(x rarr1)(x^((2)/(3))-2(x^((1)/(3))+1))/((x-1)^(2)) is equal to

underset( x rarr 1 )("lim")( root ( 3)(7+x^(3))- sqrt( 3 +x^(2)))/( x-1)

lim_(x rarr0)((4^(x)-1)^(3))/(sin((x)/(p))ln(1+(x^(2))/(3))) is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. Suppose f(x) is a polynomial of degree four , having critical poin...

    Text Solution

    |

  2. Let the latus ractum of the parabola y^(2) = 4x be the comon cho...

    Text Solution

    |

  3. underset(x to a)(Lim) ((a+2x)^((1)/(3)) - (3x)^((1)/(3)))/((3a+x)^((1)...

    Text Solution

    |

  4. If x^(3) dy + xy dx = x^(2) dy + 2y dx , y (2) = e and x gt 1, t...

    Text Solution

    |

  5. The probabilty that a randomly chosen 5 - digit number is made fo...

    Text Solution

    |

  6. Let a,b, c in R be such that a^(2) + b^(2) + c^(2) = 1 . If a cos ...

    Text Solution

    |

  7. Let p,q r be three statements such that the truth value of (p ^^ q)...

    Text Solution

    |

  8. The set of all real values of lambda for which the quadratic equ...

    Text Solution

    |

  9. Let A be a 3 xx 3 matrix such that adj A = [{:(,2,-1,1),(,-1,0,2),(,1...

    Text Solution

    |

  10. If the value of the integral int(0)^(1//2) (x^(2))/((1-x^(2))^(3//...

    Text Solution

    |

  11. Let e(1) and e(2) be the ecentricities of the ellispe (x^(2))/(25...

    Text Solution

    |

  12. If the surface area of a cube is increasing at rate of 3.6 cm^(2...

    Text Solution

    |

  13. If z(1),z(2) are complex number such that Re(z(1) ) = |z(1) - 1| , R...

    Text Solution

    |

  14. If a Delta ABC has vertices A ( - 1,7) , B (-7,1) and C(5,-5) then ...

    Text Solution

    |

  15. The plane which bisects the line joining the points (4, -2, 3) and...

    Text Solution

    |

  16. Let x(i) (1 le I le 10) be ten observation of a random variable X...

    Text Solution

    |

  17. If the terms independent of x in the expansion of (3/2 x^2 - (1)/(3x) ...

    Text Solution

    |

  18. If the sum of the series 20 + 19 (3)/(5) + 19 (1)/(5) + 18 (4)/(5) + ...

    Text Solution

    |

  19. If int sin^(-1) ( sqrt( (x)/(1 + x) ) )dx = A(x) tan^(-1) (sqrtx) + B...

    Text Solution

    |

  20. Let S be the set of all integer solutions, (x,y,z) of the system of eq...

    Text Solution

    |