Home
Class 12
MATHS
If the value of the integral int(0)^...

If the value of the integral `int_(0)^(1//2) (x^(2))/((1-x^(2))^(3//2))` dx
is `(k)/(6)` then k is equal to :

A

`2 sqrt(3) - pi `

B

`2 sqrt(3) + pi`

C

`3sqrt(2) + pi `

D

`3 sqrt(2) - pi `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{1}{2}} \frac{x^2}{(1 - x^2)^{\frac{3}{2}}} \, dx, \] we will use the substitution \( x = \sin \theta \). ### Step 1: Substitution Let \( x = \sin \theta \). Then, we have: \[ dx = \cos \theta \, d\theta. \] The limits change as follows: - When \( x = 0 \), \( \theta = 0 \). - When \( x = \frac{1}{2} \), \( \sin \theta = \frac{1}{2} \) implies \( \theta = \frac{\pi}{6} \). ### Step 2: Rewrite the integral Substituting \( x = \sin \theta \) into the integral, we get: \[ I = \int_{0}^{\frac{\pi}{6}} \frac{\sin^2 \theta}{(1 - \sin^2 \theta)^{\frac{3}{2}}} \cos \theta \, d\theta. \] Since \( 1 - \sin^2 \theta = \cos^2 \theta \), we have: \[ (1 - \sin^2 \theta)^{\frac{3}{2}} = (\cos^2 \theta)^{\frac{3}{2}} = \cos^3 \theta. \] Thus, the integral simplifies to: \[ I = \int_{0}^{\frac{\pi}{6}} \frac{\sin^2 \theta}{\cos^3 \theta} \cos \theta \, d\theta = \int_{0}^{\frac{\pi}{6}} \frac{\sin^2 \theta}{\cos^2 \theta} \, d\theta = \int_{0}^{\frac{\pi}{6}} \tan^2 \theta \, d\theta. \] ### Step 3: Integrate The integral of \( \tan^2 \theta \) can be expressed as: \[ \tan^2 \theta = \sec^2 \theta - 1. \] Thus, \[ I = \int_{0}^{\frac{\pi}{6}} \tan^2 \theta \, d\theta = \int_{0}^{\frac{\pi}{6}} \sec^2 \theta \, d\theta - \int_{0}^{\frac{\pi}{6}} 1 \, d\theta. \] Calculating these integrals: 1. The integral of \( \sec^2 \theta \) is \( \tan \theta \): \[ \int_{0}^{\frac{\pi}{6}} \sec^2 \theta \, d\theta = \tan \left( \frac{\pi}{6} \right) - \tan(0) = \frac{1}{\sqrt{3}} - 0 = \frac{1}{\sqrt{3}}. \] 2. The integral of \( 1 \) is simply: \[ \int_{0}^{\frac{\pi}{6}} 1 \, d\theta = \frac{\pi}{6} - 0 = \frac{\pi}{6}. \] Putting it all together: \[ I = \left( \frac{1}{\sqrt{3}} - \frac{\pi}{6} \right). \] ### Step 4: Final expression Now we have: \[ I = \frac{1}{\sqrt{3}} - \frac{\pi}{6}. \] ### Step 5: Express in terms of \( k \) We know that \( I = \frac{k}{6} \). Therefore, we can equate: \[ \frac{k}{6} = \frac{1}{\sqrt{3}} - \frac{\pi}{6}. \] Multiplying through by 6 gives: \[ k = 6 \left( \frac{1}{\sqrt{3}} - \frac{\pi}{6} \right) = \frac{6}{\sqrt{3}} - \pi = 2\sqrt{3} - \pi. \] ### Conclusion Thus, the value of \( k \) is: \[ \boxed{2\sqrt{3} - \pi}. \]
Promotional Banner

Topper's Solved these Questions

  • JEE MAINS

    JEE MAINS PREVIOUS YEAR|Exercise Physics|30 Videos
  • JEE MAINS 2021

    JEE MAINS PREVIOUS YEAR|Exercise Mathematics (Section A )|20 Videos

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(0)^(1) (1)/((1+x^(2))^(3//2))dx is

The value of the integral int_(0)^(1)(1)/((1+x^(2))^((3)/(2)))dx is

The value of the integral int f_(0)^(2)|x^(2)-1|dx is

The value of the integral int_(-a)^(a) (xe^(x^(2)))/(1+x^(2))dx is

The value of the integral int _(0)^(2) | x^(2)-1| dx is

The value of the integral I=int_(1)^(oo) (x^(2)-2)/(x^(3)sqrt(x^(2)-1))dx , is

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

The value of the integral int_(1)^(3)|(x-1)(x-2)|dx is

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

JEE MAINS PREVIOUS YEAR-JEE MAINS 2020-MATHEMATICS
  1. The set of all real values of lambda for which the quadratic equ...

    Text Solution

    |

  2. Let A be a 3 xx 3 matrix such that adj A = [{:(,2,-1,1),(,-1,0,2),(,1...

    Text Solution

    |

  3. If the value of the integral int(0)^(1//2) (x^(2))/((1-x^(2))^(3//...

    Text Solution

    |

  4. Let e(1) and e(2) be the ecentricities of the ellispe (x^(2))/(25...

    Text Solution

    |

  5. If the surface area of a cube is increasing at rate of 3.6 cm^(2...

    Text Solution

    |

  6. If z(1),z(2) are complex number such that Re(z(1) ) = |z(1) - 1| , R...

    Text Solution

    |

  7. If a Delta ABC has vertices A ( - 1,7) , B (-7,1) and C(5,-5) then ...

    Text Solution

    |

  8. The plane which bisects the line joining the points (4, -2, 3) and...

    Text Solution

    |

  9. Let x(i) (1 le I le 10) be ten observation of a random variable X...

    Text Solution

    |

  10. If the terms independent of x in the expansion of (3/2 x^2 - (1)/(3x) ...

    Text Solution

    |

  11. If the sum of the series 20 + 19 (3)/(5) + 19 (1)/(5) + 18 (4)/(5) + ...

    Text Solution

    |

  12. If int sin^(-1) ( sqrt( (x)/(1 + x) ) )dx = A(x) tan^(-1) (sqrtx) + B...

    Text Solution

    |

  13. Let S be the set of all integer solutions, (x,y,z) of the system of eq...

    Text Solution

    |

  14. Let a place P contain two lines vecr = hati + lambda(hati + hatj), ...

    Text Solution

    |

  15. m A.M. and 3 G.M. are inserted between 3 and 243 such that 2^(nd) GM=4...

    Text Solution

    |

  16. If the tangent to the curve y= e^x at a point (c, e^c) and the normal ...

    Text Solution

    |

  17. The total number of 3-digit numbers, whose sum of digits is 10, is .

    Text Solution

    |

  18. If (a+sqrt2b cosx)(a-sqrt2b cosy)=a^2-b^2, where a gt b gt 0 , then ...

    Text Solution

    |

  19. The mean and variance of 8 observations are 10 and 13.5 respectively ....

    Text Solution

    |

  20. 1+(1-1.2^2)+(1-3.4^2)+(1-5.6^2)+.....(1-19.20^2) = alpha-220beta fi...

    Text Solution

    |