Home
Class 12
MATHS
Prove that [[veca, vecb+vecc, vecd]]=[[v...

Prove that `[[veca, vecb+vecc, vecd]]=[[veca, vecb ,vecd]]+[[veca,vecc,vecd]]`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

For any four vectors veca , vecb , vecc , vecd we have (vecaxxvecb)xx(veccxxvecd)=[veca,vecb,vecd]vecc-[veca,vecb,vecc]vecd=[veca,vecc,vecd]vecb-[vecb,vecc,vecd]veca .

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0

Prove that [lambda veca +mu vecb" "vecc" "vecd]=lambda [veca" "vecc" "vecd]+mu[vecb" "vecc" "vecd] .

If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vecd)] , then lamda+mu=

If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vecd)] , then lamda+mu=