Home
Class 12
MATHS
The product of matrices A=[[cos^2theta,c...

The product of matrices `A=[[cos^2theta,costheta],[sinthetacostheta,sinthetasin^2theta]]` and `B=[[cos^2phicosphi,sinphicosphi],[sinphi,sin^2phi]]` is a null matrix if `theta-phi=` (A) `2npi,n in Z` (B) `(npi)/2, n in Z` (C) `(2n+1)pi/2, n in Z` (D) `npi, n in Z`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [[cos^2theta, costhetasintheta],[costhetasintheta, sin^2theta]] B= [[cos^2phi, cosphisinphi], [cosphisinphi, sin^2phi]] and theta - phi = (2n+1)(pi)/2 Find AB.

If A=[(cos^2theta,costheta sintheta),(cos theta sintheta, sin^2theta)] and B=[(cos^2 phi, cos phi sin phi),(cos phisinphi,sin^2phi)], show that AB is zero matrix if theta and phi differ by an odd multiple of pi/2.

If theta-phi=pi/2, prove that, [(cos^2 theta,cos theta sin theta),(cos theta sin theta,sin^2 theta)] [(cos^2 phi,cos phi sin phi), (cos phi sin phi,sin^2 phi)]=0

The determinant |(cos(theta+phi),-sin(theta+phi),cos2phi),(sintheta,costheta,sinphi),(-costheta,sintheta,cosphi)| is

y=sin^(2)theta+cos ec^(2)theta,theta!=n pi n in z then

Using induction,prove that cos theta cos2 theta cos2^(2)theta...cos2^(n-1)theta=(sin2^(n)theta)/(2^(n)sin theta)