Home
Class 12
MATHS
Let P=[a(i j)] be a 3xx3 matrix and le...

Let `P=[a_(i j)]` be a `3xx3` matrix and let `Q=[b_(i j)],w h e r eb_(i j)=2^(i+j)a_(i j)for1lt=i ,jlt=3.` If the determinant of `P` is 2, then the determinant of the matrix `Q` is `2^(10)` b. `2^(11)` c. `2^(12)` d. `2^(13)`

A

`2^(11)`

B

`2^(12)`

C

`2^(13)`

D

`2^(10)`

Text Solution

Verified by Experts

We have, `abs(Q) = abs((2^(2) a_(11) ,2^(3)a_(12), 2^(4) a_(13)),(2^(3)a_(21),2^(4)a_(22),2^(5) a_(23) ),(2^(4)a_(31),2^(5)a_(32),2^(6)a_(33)))`
` =2^(2) cdot 2^(3)cdot2^(4) abs(( a_(11) ,a_(12), a_(13)),(2a_(21),2a_(22),2 a_(23) ),(2^(2)a_(31),2^(2)a_(32),2^(2)a_(33)))`
` =2^(9) cdot 2cdot2^(2) abs(( a_(11) ,a_(12), a_(13)),(a_(21),a_(22), a_(23) ),(a_(31),a_(32),a_(33))) = 2^(12) abs(P)`
`therefore abs(Q)=2^(12)xx2=2^(13)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let P=[a_("ij")] be a 3xx3 matrix and let Q=[b_("ij")] , where b_("ij")=2^(i+j) a_("ij") for 1 le i, j le 3 . If the determinant of P is 2, then the determinant of the matrix Q is

Let P = [a_(ij)] " be a " 3 xx 3 matrix and let Q = [b_(ij)], " where " b_(ij) = 2^(I +j) a_(ij) " for " 1 le i, j le 3 . If the determinant of P is 2, then the determinant of the matrix Q is

Let P=[a]"be a "3xx3 matrix and let Q=[b]=2^(i+j)a_(i) "for" 1 lei, j le 3 , If the determinant of P is 2, then the determinant of the matrix Q is:

Let A=[a_(ij)] and B=[b_(ij)] be two 3xx3 real matrices such that b_(ij)=(3)(i+j-2)a_(ji) , where i, j = 1,2,3. If the determinant of B is 81, then the determinant of A is :

Let A=[a_(ij)] and B=[b_(ij)] be two 3times3 real matrices such that b_(ij)=(3^(i+j-2))a_(ji) , where i,j=1,2,3 . If the determinant of B is 81 , then the determinant of A is

Let A= [a_(ij)] and B=[b_(ij)] be two 3times3 real matrices such that b_(ij)=(3)^((i+j-2))a_(ji) ,where i,j=1,2,3 .If the determinant of B is 81 ,then the determinant of A is

Let A=[a_(ij)] and B=[b_(ij)] be two 3times3 real matrices such that b_(ij)=(3)^(i+j-2)a_(ji), where i , j=1,2,3 .if the determinant of B is 81 ,then the determinant of A is

Let A=[a_(ij)] and B=[b_(ij)] be two 3times3 real matrices such that b_(ij)=(3)^((i+j-2))a_(ji) ,where i,j=],[1,2,3 .If the determinant of B is 81 ,then the determinant of A is

Let A=[a_(ij)] be a square matrix of order 3 and B=[b_(ij)] be a matrix such that b_(ij)=2^(i-j)a_(ij) for 1lei,jle3, AA i,j in N . If the determinant of A is same as its order, then the value of |(B^(T))^(-1)| is