Home
Class 12
MATHS
If P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]],...

If `P=[[sqrt(3)/2,1/2],[-1/2,sqrt(3)/2]], A=[[1,1],[0,1]]` and `Q=PAP^T` and `X=P^TQ^(2005)P`, then `X` equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T) and X=P^(T)Q^(2005)P, then X equal to:

If P= [[sqrt(3)/2, 1/2],[-1/2 , sqrt(3)/ 2]], A = [[1,1],[0,1]]and Q= PAP^(T) , the ltbr. P^(T)(Q^(2005)) P equal to

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]] and A=[[1,10,1]] and Q=PAP^(T) and x,=P^(T)Q^(2005)P then x is

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T), then P^(T)Q^(2015)P is

If P=[[(sqrt(3))/(2),(1)/(2)-(1)/(2),(sqrt(3))/(2)]],A=[[1,10,1]] and Q=PAP^(T), then P^(T)Q^(2013)P=

If {:P=[(sqrt3/2,1/2),(1/2,sqrt3/2)],A=[(1,1),(0,1)]:}and Q=PAP^T," then" P^TQ^2015P , is

P=[[(sqrt(3))/(2),(1)/(2)],[-(1)/(2),(sqrt(3))/(2)]] and A =[[1,1],[0,1]] , Q= PAP^T and P^TQ^(2020)P=[[alpha,gamma],[beta,alpha]] then alpha+beta+gamma