Home
Class 12
MATHS
Let f(x) be a continuous function AAx i...

Let `f(x)` be a continuous function `AAx in R ,` except at `x=0,` such that `int_0^a f(x)dx`, `ain R^+` exists. If `g(x)=int_x^a(f(t))/t dt `,prove that `int_0^af(x)dx=int_0^ag(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^a f(a-x) dx=

Prove that int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

Prove that int_0^t f(x)g(t-x)dx=int_0^t g(x)f(t-x)dx

If f(2a-x)=-f(x), prove that int_0^(2a)f(x)dx=0

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

If f is an integrable function such that f(2a-x)=f(x), then prove that int_0^(2a)f(x)dx=2int_0^af(x)dx

If f(x)=int_0^x (sint)/(t)dt,xgt0, then

If f is an integrable function, show that int_(-a)^af(x^2)dx=2int_0^af(x^2)dx