Home
Class 12
MATHS
If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)...

If `f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1,` then prove that `int_0^2f(2-x)dx=2int_0^1f(x)dxdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_-2^2 f(x^4)dx=2int_0^2 f(x^4)dx

Prove that: int_(0)^(2a)f(x)dx=int_(0)^(2a)f(2a-x)dx

If f(2a-x)=-f(x), prove that int_0^(2a)f(x)dx=0

If f(a+b-x0=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot

Prove that int_(0)^(2a)f(x)dx=int_(a)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

IF f(x+f(y))=f(x)+y AA x, y in R and f(0)=1 , then int_(0)^(10)f(10-x)dx is equal to

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :

Prove that int_0^(2a) f(x)/(f(x)+f(2a-x))dx=a

If f is an integrable function such that f(2a-x)=f(x), then prove that int_0^(2a)f(x)dx=2int_0^af(x)dx