Home
Class 12
MATHS
Let intx^(x+p)f(t)dt be independent of x...

Let `int_x^(x+p)f(t)dt` be independent of `xa n dI_1=int_0^pf(t)dt ,I_2=int_(10)^(p^n+10)f(z)dz` for some `p ,` where `n in Ndot` Then evaluate `(l_2)/(l_1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let int_(x)^(x+p)f(t)dt be independent of x and I_(1)=int_(0)^(p)f(t)dt,quad I_(2)=int_(10)^(p^(n)+10)f(z)dz for some p, where n in N. Then evaluate (l_(2))/(l_(1)) .

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If int_(0)^(1) f(t)dt=x^2+int_(0)^(1) t^2f(t)dt , then f'(1/2)is

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If int_(0)^(x)f(t)dt = x^(2)-int_(0)^(x^(2))(f(t))/(t)dt then find f(1) .

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval