Home
Class 12
MATHS
Let f(x) be a derivable function satisfy...

Let `f(x)` be a derivable function satisfying `f(x)=int_0^x e^tsin(x-t)dta n dg(x)=f^(x)-f(x)` Then the possible integers in the range of `g(x)` is_______

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt then int_(0)^(1)f(x)dx=

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .

Let f:RtoR be a differntiable function satisfying f(x)=x^(2)+3int_(0)^(x)e^(-t^(3)).f(x-t^(3))dt . Then find f(x) .

Let f(x) is a derivable function satisfying xf(x)-int_(0)^(x)f(t)dt=x+ln(sqrt(x^(2)+1)-x) with f(0)=ln2Let g(x)=xf'(x), Then

if f be a differentiable function such that f(x) =x^(2)int_(0)^(x)e^(-t)f(x-t). dt. Then f(x) =

If f(x) is differentiable function and f(x)=x^(2)+int_(0)^(x) e^(-t) (x-t)dt ,then f)-t) equals to

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f be a real valued function satisfying f(x)+f(x+6)=f(x+3)+f(x+9).Then int_x^(x+12)f(t)dt is